A Novel Antimalarial Metabolite in Erythrocyte From the Hydroxylation of Dihydroartemisinin by .

Front Chem

Institute of Chinese Meteria Medica, Artermisinin Research Center, Academy of Chinese Medical Sciences, Beijing, China.

Published: April 2022

AI Article Synopsis

Article Abstract

Dihydroartemisinin (DHA) is a sesquiterpene endoperoxide with prominent antimalarial efficacy, which was discovered by Professor Youyou Tu through the reduction of artemisinin in the 1970s. It is always a challenging work for scientists to investigate the metabolites of DHA in the red blood cells due to the complicated matrix background. As a bottleneck, the investigation of metabolites, especially exploring the pharmacodynamic material in the red blood cell, is necessary and significant for metabolism research of antimalarial agent. Recently, microbial transformation provides a green and economical means for mimicking mammal metabolism and synthesis active metabolites, based on which is one efficient route for drug discovery. In this study, a strain from was employed as an efficient tool to explore active metabolites of DHA in erythrocyte. Microbial transformation products of DHA by CICC 40250 were detected and analyzed by ultra-performance liquid chromatography (UPLC)-electrospray ionization (ESI)-quadrupole time-of-flight (Q-TOF)-mass spectrometry (MS), and the main products were isolated and identified. The antimalarial activity of the isolated products was also screened . Totally, nine products were discovered through UPLC-ESI-QTOF-MS, and three main products with novel chemical structures were isolated for the first time, which were also detected in red blood cells as the metabolites of DHA. After evaluation, 7-hydroxydihydroartemisinin () exhibited a good antimalarial activity with an IC value of 133 nM against (Pf.) 3D7. The structure and stereo-configuration of novel compound were validated X-ray single crystal diffraction. Microbial transformation was firstly employed as the appropriate model for metabolic simulation in erythrocyte of DHA. Three novel metabolites in erythrocyte were obtained for the first time through our microbial model, and one of which was found to show moderate antimalarial activity. This work provided a new research foundation for antimalarial drug discovery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9086495PMC
http://dx.doi.org/10.3389/fchem.2022.850133DOI Listing

Publication Analysis

Top Keywords

metabolites dha
12
red blood
12
microbial transformation
12
antimalarial activity
12
blood cells
8
active metabolites
8
drug discovery
8
main products
8
dha
6
antimalarial
6

Similar Publications

Aripiprazole (ARI) is an atypical antipsychotic which is a substrate of P-glycoprotein (P-gp), a transmembrane glycoprotein that plays a crucial role in eliminating potentially harmful compounds from the organism. ARI once-monthly (AOM) is a long-acting injectable form which improves treatment compliance. Genetic polymorphisms in ABCB1 may lead to changes in P-gp function, leading to individual differences in drug disposition.

View Article and Find Full Text PDF

Background/objective: Zinc deficiency is common worldwide and has been linked to reduced growth and immune function, increased risk of and slower recovery from infections, and increased risk of non-communicable diseases. To address the issue, zinc biofortification of wheat has been proposed as a sustainable approach to increase dietary zinc intake in countries like Pakistan, where zinc deficiency rates are high and wheat is the primary staple crop. Since plasma zinc concentration (PZC) does not reliably respond to small changes in zinc intake, biomarkers sensitive to small changes in zinc intake achievable though biofortification are needed.

View Article and Find Full Text PDF

Snail is not only useful for bioremediation, purifying aquaculture environments, but it is also a commercially valuable and nutritionally rich aquatic product. To analyze the effect of various stocking densities on the muscle nutritional quality and metabolic functions of . The transcriptome and metabolome were analyzed and set up three different density groups-low (LD, 234.

View Article and Find Full Text PDF

Transcriptome and Metabolome Insights into Key Genes Regulating Fat Deposition and Meat Quality in Pig Breeds.

Animals (Basel)

December 2024

Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.

Meat quality is a complex trait that exhibits significant variation across pig breeds, and the regulatory mechanisms governing pork meat quality are not fully elucidated. We compared the transcriptomics and metabolomics of the longissimus dorsi (LD) muscle between the Songliao Black Pig (SBP) and Large White × Landrace Pig (LWLDP) to investigate breed-specific differences in meat quality and underlying regulatory pathways. The results showed that SBP meat had a higher marbling score and backfat thickness, a richer color, a lower shear force, and reduced drip loss.

View Article and Find Full Text PDF

The potential of insects as alternative ingredients in animal feeds is well-established. However, limited information is available on the use of insect oils as alternative lipid sources in aquafeeds. To address this, a study was conducted on gilthead seabream (Sparus aurata) juveniles to evaluate the effects of including black soldier fly (Hermetia illucens) larvae oil (HIO).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!