Hemicelluloses are an abundant biopolymer resource with interesting properties for applications in coatings and composite materials. The objective of this investigation was to identify variables of industrially relevant extraction processes that increase the purity of hemicelluloses extracted from fruit residues. Our main finding is that extraction with subcritical water, followed by precipitation with alcohol, can be adjusted to yield products with a purity of at least 90%. Purity was determined based on the total concentration of glucose, galactose, xylose, arabinose, and mannose after hydrolysis with sulfuric acid. In the first experimental design (DoE methodology), the effects of extraction temperature (95-155 °C) and time (20-100 min) on yield and purity were studied. A clear trade-off between yield and purity was observed at high temperatures, indicating the selective removal of impurities. In the second experimental design, the influence of extract pH and alcohol concentration on yield and purity was investigated for the raw extract and a concentrate of this extract with 1/6 of the original volume. The concentrate was obtained by ultrafiltration through ceramic hollow-fiber membranes. The highest purity of 96% was achieved with the concentrate after precipitating with 70% alcohol. Key factors for the resource efficiency of the overall process are addressed. It is concluded that extraction with subcritical water and ultrafiltration are promising technologies for producing hemicelluloses from fruit residues for material applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9088762PMC
http://dx.doi.org/10.1021/acsomega.1c06055DOI Listing

Publication Analysis

Top Keywords

yield purity
12
fruit residues
8
extraction subcritical
8
subcritical water
8
experimental design
8
purity
7
extraction
5
hot-water hemicellulose
4
hemicellulose extraction
4
extraction fruit
4

Similar Publications

How to Convert a 3D Printer to Personal Automated Liquid Handler for Life Science Workflows.

SLAS Technol

December 2024

Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI 02912, USA. Electronic address:

Automated liquid handlers are fundamental in modern life science laboratories, yet their high costs and large footprints often limit accessibility for smaller labs. This study presents an innovative approach to decentralizing a liquid handling system by converting a low-cost 3D printer into a customizable and accurate liquid handler. The Personal Automated Liquid Handler (PALH) system, costing ∼$400, incorporates a single-channel pipet, custom 3D-printed components, and open-source software for personalized workflows, allowing researchers to build and modify the system for specific experimental needs.

View Article and Find Full Text PDF

High-quality RNA is crucial in clinical diagnostics and precision medicine. Formalin-fixed and paraffin-embedded (FFPE) tissues pose a challenge due to nucleic acid fragmentation and crosslinking. In this pilot study, various commercially available techniques for extracting RNA from small FFPE samples were compared.

View Article and Find Full Text PDF

Collagen, a critical biomaterial with wide applications in pharmaceuticals, cosmetics, and medical industries, can be sourced sustainably from fish scales. This study optimizes the extraction of collagen using Tris-Glycine buffer from fish scales via the Taguchi method. Various extraction parameters-buffer concentration, temperature, pH, and time-were evaluated to identify optimal conditions.

View Article and Find Full Text PDF

Female lumpfish () are a primary target of commercial fishery for their roe, a substitute for caviar. The remaining carcasses are underutilized rest raw material. The pre-treatment and acid extraction conditions of collagen from lumpfish skins were optimized.

View Article and Find Full Text PDF

Objective: To optimize the automated radiosynthesis of the purinergic ion channel receptor 7 (P2X7R) imaging agent F-JNJ64413739 and evaluate its potential for brain imaging in osteoporotic model rats.

Methods: A more electron-deficient nitropyridine was employed as the labeling precursor to facilitate the F-labeling. The radiosynthesis was conducted on an AllinOne synthesis module, and followed by purification via high-performance liquid chromatography (HPLC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!