In this study, the hexane fraction of soft coral sp. gathered from the Red Sea was evaluated for its antidermatophyte activity. The antidermatophyte activity was performed versus different fungi, including , , and , using a broth microdilution method. The hexane fraction showed minimum inhibitory concentrations (MICs) against the tested dermatophytes of 104.2 ± 20.8, 125 ± 0.0, and 83.33 ± 20.83 μg/mL respectively. The chemical constitution of the lipoidal matter (hexane fraction) was characterized by gas chromatography coupled with a mass spectrometer (GC-MS). The unsaponifiable fraction (USAP) of sp. showed relative percentages of hydrocarbons and vitamins of 69.61% and 3.26%, respectively. Moreover, the percentages of saturated and unsaturated fatty acids were 53.67% and 42.05%, respectively. In addition, a molecular networking study (MN) of the GC-MS analysis performed using the Global Natural Products Social Molecular Networking (GNPS) platform was described. The molecular docking study illustrated that the highest binding energy score for spathulenol toward the CYP51 enzyme was -8.3674 kcal/mol, which predicted the mode of action of the antifungal activity, and then the results were confirmed by the inhibitory effect of sp. against CYP51 with an IC value of 12.23 μg/mL. Our results highlighted the antifungal potential of sp. metabolites.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9088928PMC
http://dx.doi.org/10.1021/acsomega.2c00063DOI Listing

Publication Analysis

Top Keywords

molecular networking
12
hexane fraction
12
cyp51 enzyme
8
red sea
8
soft coral
8
antidermatophyte activity
8
potential inhibitors
4
inhibitors cyp51
4
enzyme dermatophytes
4
dermatophytes red
4

Similar Publications

Neovascular age-related macular degeneration and diabetic macular edema are leading causes of vision-loss evoked by retinal neovascularization and vascular leakage. The glycoprotein microfibrillar-associated protein 4 (MFAP4) is an integrin αβ ligand present in the extracellular matrix. Single-cell transcriptomics reveal MFAP4 expression in cell-types in close proximity to vascular endothelial cells including choroidal vascular mural cells and retinal astrocytes and Müller cells.

View Article and Find Full Text PDF

Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).

View Article and Find Full Text PDF

Background: Drug-drug interactions (DDIs) especially antagonistic ones present significant risks to patient safety, underscoring the urgent need for reliable prediction methods. Recently, substructure-based DDI prediction has garnered much attention due to the dominant influence of functional groups and substructures on drug properties. However, existing approaches face challenges regarding the insufficient interpretability of identified substructures and the isolation of chemical substructures.

View Article and Find Full Text PDF

Blood-based epigenome-wide association study and prediction of alcohol consumption.

Clin Epigenetics

January 2025

Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.

Alcohol consumption is an important risk factor for multiple diseases. It is typically assessed via self-report, which is open to measurement error through recall bias. Instead, molecular data such as blood-based DNA methylation (DNAm) could be used to derive a more objective measure of alcohol consumption by incorporating information from cytosine-phosphate-guanine (CpG) sites known to be linked to the trait.

View Article and Find Full Text PDF

The process of viral entry into host cells is crucial for the establishment of infection and the determination of viral pathogenicity. A comprehensive understanding of entry pathways is fundamental for the development of novel therapeutic strategies. Standard techniques for investigating viral entry include confocal microscopy and flow cytometry, both of which provide complementary qualitative and quantitative data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!