The present study explores the preparation, characterization and reusability efficacy of an amine-functionalized graphene oxide and polyphenol oxidase complex for the removal of phenol from aqueous phase. In brief, graphene oxide (GO) is synthesized according to modified Hummer's method using graphite powder and functionalized with amine using the Bucherer's method (GO-NH). Partially purified polyphenol oxidase (PP-PPO) enzyme extracted from is used for the preparation of the complex. The resultant GO-NH-(PP-PPO) complex is used for the phenol degradation studies. The samples of GO, GO-NH, and GO-NH-(PP-PPO) complex are characterized using various instrumental techniques. Spectral UV data and FTIR and XRD diffraction patterns confirm the amine functionalization on GO. Raman spectrum, SEM micrograph and thermogravimetric (TG) analyses authenticate the linked enzyme on GO-NH. GO-NH-(PP-PPO) complex demonstrates >90% enzyme stability at all the studied temperatures (4 °C, -20 °C, RT and 37 °C). Phenol degradation studies show >99% removal of 1000 ppm of phenol within 5 hours from the start of the experiment at the optimized pH of 5.0 and temperature of 30 °C, as inferred from HPLC analysis. Catechol and hydroquinone compounds are identified as intermediates during the removal of phenol. Furthermore, studies on the reuse of GO-NH-(PP-PPO) complex suggest that the complex can be used effectively for the removal of phenol up to maximum 7 cycles. In conclusion, the observations made in the present study show that the complex containing amine-functionalized graphene oxide and phenoloxidase is effective for the removal of phenol with appreciable reusability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9090162 | PMC |
http://dx.doi.org/10.1039/c8ra06364h | DOI Listing |
Heliyon
January 2025
Graduate School of International Agricultural Technology, Department of Green Eco System, Engineering, Seoul National University, Pyeongchang, 25354, Gangwon-do, South Korea.
Organic contaminants from wastewater toxicity to the environment has increased during the last few decades and, therefore, there is an urgent need to decontaminate wastewater prior to disposal. This study aimed to create a high surface area catalytic activated carbon (AC) under same carbonization conditions for phenol and methylene blue (organic wastewater) decontamination. husk (MH), sesame husk (SH), and baobab husk (BH) were used to prepare activated carbon for the removal of methylene blue (MB) and phenol (Ph).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-Gu, Seoul 04763, Republic of Korea.
In this research, S-scheme heterojunction photocatalysts are prepared through the hybridization of nitrogen-rich g-CN with TiO (coded as TCN-(): as the weight ratio of TiO:g-CN). The photocatalytic potential of TCN-() is evaluated against benzene (1-5 ppm) across varying humidity levels using a dynamic flow packed-bed photocatalytic reactor. Among the prepared composites, TCN-(10) exhibits the highest synergy between g-CN and TiO at "" ratio of 10%, showing superior best benzene degradation performance (e.
View Article and Find Full Text PDFFood Chem
January 2025
Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, PR China. Electronic address:
Herein, nonhydrated phospholipids (NHPs) were removed from soybean oil using three silica adsorbents modified using aminopolycarboxylic acid ligands. The removal rate of NHPs was 62.98 %.
View Article and Find Full Text PDFFoods
December 2024
Departamento de Tecnología de Alimentos, INIA, CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain.
During coffee production, the removal and disposal of the coffee bean-surrounding layers pose an environmental problem. In this work, we examined the effects of several aqueous coffee cherry extracts on the growth and metabolism, biofilm formation, antioxidant capacity and antimicrobial activity of six lactobacilli from the INIA collection and a commercial probiotic GG strain. Growth medium supplementation with different coffee cherry extracts (at 40%) stimulated strain growth and metabolism.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Environmental Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China. Electronic address:
Microbe-Assisted Phytoremediation (MAP) is an eco-friendly method for remediating soil contaminated with heavy metals such as cadmium (Cd) and chromium (Cr). This study demonstrates the potential of a king grass-Serratia marcescens strain S27 (KS) co-symbiotic system to enhance heavy metal remediation. The KS symbiosis increased the biomass of king grass by 48 % and enhanced the accumulation of Cd and Cr in the whole plant by 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!