Preparation, characterization and reusability efficacy of amine-functionalized graphene oxide-polyphenol oxidase complex for removal of phenol from aqueous phase.

RSC Adv

Biological Material Laboratory (Microbiology Division), CSIR-CLRI Adyar Chennai 20 Tamil nadu India

Published: November 2018

AI Article Synopsis

  • The study investigates a complex made of amine-functionalized graphene oxide and polyphenol oxidase for effectively removing phenol from water.
  • Characterization techniques like UV, FTIR, and XRD confirm the proper functionalization and stability of the complex, which maintains over 90% enzyme activity at various temperatures.
  • The complex shows over 99% phenol removal efficiency within 5 hours and can be reused effectively for up to 7 cycles in the degradation process.

Article Abstract

The present study explores the preparation, characterization and reusability efficacy of an amine-functionalized graphene oxide and polyphenol oxidase complex for the removal of phenol from aqueous phase. In brief, graphene oxide (GO) is synthesized according to modified Hummer's method using graphite powder and functionalized with amine using the Bucherer's method (GO-NH). Partially purified polyphenol oxidase (PP-PPO) enzyme extracted from is used for the preparation of the complex. The resultant GO-NH-(PP-PPO) complex is used for the phenol degradation studies. The samples of GO, GO-NH, and GO-NH-(PP-PPO) complex are characterized using various instrumental techniques. Spectral UV data and FTIR and XRD diffraction patterns confirm the amine functionalization on GO. Raman spectrum, SEM micrograph and thermogravimetric (TG) analyses authenticate the linked enzyme on GO-NH. GO-NH-(PP-PPO) complex demonstrates >90% enzyme stability at all the studied temperatures (4 °C, -20 °C, RT and 37 °C). Phenol degradation studies show >99% removal of 1000 ppm of phenol within 5 hours from the start of the experiment at the optimized pH of 5.0 and temperature of 30 °C, as inferred from HPLC analysis. Catechol and hydroquinone compounds are identified as intermediates during the removal of phenol. Furthermore, studies on the reuse of GO-NH-(PP-PPO) complex suggest that the complex can be used effectively for the removal of phenol up to maximum 7 cycles. In conclusion, the observations made in the present study show that the complex containing amine-functionalized graphene oxide and phenoloxidase is effective for the removal of phenol with appreciable reusability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9090162PMC
http://dx.doi.org/10.1039/c8ra06364hDOI Listing

Publication Analysis

Top Keywords

removal phenol
20
go-nh-pp-ppo complex
16
amine-functionalized graphene
12
graphene oxide
12
complex
9
preparation characterization
8
characterization reusability
8
reusability efficacy
8
efficacy amine-functionalized
8
oxidase complex
8

Similar Publications

Adsorption of phenol and methylene blue contaminants onto high-performance catalytic activated carbon from biomass residues.

Heliyon

January 2025

Graduate School of International Agricultural Technology, Department of Green Eco System, Engineering, Seoul National University, Pyeongchang, 25354, Gangwon-do, South Korea.

Organic contaminants from wastewater toxicity to the environment has increased during the last few decades and, therefore, there is an urgent need to decontaminate wastewater prior to disposal. This study aimed to create a high surface area catalytic activated carbon (AC) under same carbonization conditions for phenol and methylene blue (organic wastewater) decontamination. husk (MH), sesame husk (SH), and baobab husk (BH) were used to prepare activated carbon for the removal of methylene blue (MB) and phenol (Ph).

View Article and Find Full Text PDF

Mechanism, Performance, and Application of g-CN-Coupled TiO as an S-Scheme Heterojunction Photocatalyst for the Abatement of Gaseous Benzene.

ACS Appl Mater Interfaces

January 2025

Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-Gu, Seoul 04763, Republic of Korea.

In this research, S-scheme heterojunction photocatalysts are prepared through the hybridization of nitrogen-rich g-CN with TiO (coded as TCN-(): as the weight ratio of TiO:g-CN). The photocatalytic potential of TCN-() is evaluated against benzene (1-5 ppm) across varying humidity levels using a dynamic flow packed-bed photocatalytic reactor. Among the prepared composites, TCN-(10) exhibits the highest synergy between g-CN and TiO at "" ratio of 10%, showing superior best benzene degradation performance (e.

View Article and Find Full Text PDF

Mechanism of nonhydrated phospholipid removal in soybean oil using aminopolycarboxylic acid ligands.

Food Chem

January 2025

Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, PR China. Electronic address:

Herein, nonhydrated phospholipids (NHPs) were removed from soybean oil using three silica adsorbents modified using aminopolycarboxylic acid ligands. The removal rate of NHPs was 62.98 %.

View Article and Find Full Text PDF

During coffee production, the removal and disposal of the coffee bean-surrounding layers pose an environmental problem. In this work, we examined the effects of several aqueous coffee cherry extracts on the growth and metabolism, biofilm formation, antioxidant capacity and antimicrobial activity of six lactobacilli from the INIA collection and a commercial probiotic GG strain. Growth medium supplementation with different coffee cherry extracts (at 40%) stimulated strain growth and metabolism.

View Article and Find Full Text PDF

Glycine betaine enhances heavy metal phytoremediation via rhizosphere modulation and nitrogen metabolism in king grass-Serratia marcescens strain S27 symbiosis.

J Hazard Mater

January 2025

School of Environmental Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China. Electronic address:

Microbe-Assisted Phytoremediation (MAP) is an eco-friendly method for remediating soil contaminated with heavy metals such as cadmium (Cd) and chromium (Cr). This study demonstrates the potential of a king grass-Serratia marcescens strain S27 (KS) co-symbiotic system to enhance heavy metal remediation. The KS symbiosis increased the biomass of king grass by 48 % and enhanced the accumulation of Cd and Cr in the whole plant by 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!