Thermal annealing assisted synthesis of Sb@C yolk-shell microspheres for sodium-ion batteries.

RSC Adv

Sichuan Research Center of New Materials, Institute of Chemical Materials, China Academy of Engineering Physics 596 Yinhe Road, Shuangliu Chengdu 610200 China

Published: October 2018

Sb@C yolk-shell spheres with tunable interior space have been obtained a facile thermal annealing strategy and used as anodes for sodium-ion batteries. The proportion of interior space in the yolk-shell structure has a significant influence on the electrochemical performance of the electrode material.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9088933PMC
http://dx.doi.org/10.1039/c8ra07567kDOI Listing

Publication Analysis

Top Keywords

thermal annealing
8
sb@c yolk-shell
8
sodium-ion batteries
8
interior space
8
annealing assisted
4
assisted synthesis
4
synthesis sb@c
4
yolk-shell microspheres
4
microspheres sodium-ion
4
batteries sb@c
4

Similar Publications

Pressure-Induced Engineering of Surface Oxygen Vacancies on Metal Oxides for Heterogeneous Photocatalysis.

J Am Chem Soc

January 2025

State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China.

Oxygen vacancies (OVs) spatially confined on the surface of metal oxide semiconductors are advantageous for photocatalysis, in particular, for O-involved redox reactions. However, the thermal annealing process used to generate surface OVs often results in undesired bulk OVs within the metal oxides. Herein, a high pressure-assisted thermal annealing strategy has been developed for selectively confining desirable amounts of OVs on the surface of metal oxides, such as tungsten oxide (WO).

View Article and Find Full Text PDF

Erbium-implanted silicon (Er:Si) holds promise for quantum networking, but the formation of multiple Er centers poses a challenge. We show that the cubic center (Er-C) has C or lower symmetry and propose all Er centers range between full Si- and full O-coordination. By co-implanting Si with Er and O (both 10cm) and increasing the thermal anneal quenching rate from ∼100 °C/s to ∼1000 °C/s, we shifted the dominant optically active center from ErO clusters to the Er-C center with mixed Si and O coordination.

View Article and Find Full Text PDF

Terminal metal-phosphorus (M-P) complexes are of significant contemporary interest as potential platforms for P-atom transfer (PAT) chemistry. Decarbonylation of metal-phosphaethynolate (M-PCO) complexes has emerged as a general synthetic approach to terminal M-P complexes. M-P complexes that are stabilized by strong M-P multiple bonds are kinetically persistent and isolable.

View Article and Find Full Text PDF

Asymmetric self-organization from a symmetric film by phase separation.

Nanoscale

January 2025

Department of Materials Science and Engineering, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu 804-8550, Japan.

Self-organization realizes various nanostructures to control material properties such as superconducting vortex pinning and thermal conductivity. However, the self-organization of nucleation and growth is constrained by the growth geometric symmetry. To realize highly controlled three-dimensional nanostructures by self-organization, nanostructure formation that breaks the growth geometric symmetry thermodynamically and kinetically, such as tilted or in-plane aligned nanostructures, is a challenging issue.

View Article and Find Full Text PDF

Heat-Assisted Direct Photopatterning of Small-Molecule OLED Emitters at the Micrometer Scale.

Small Methods

January 2025

Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, 04107, Republic of Korea.

A crucial step in fabricating full-color organic light-emitting diode (OLED) displays is patterning the emissive layer (EML). Traditional methods utilize thermal evaporation through metal masks. However, this limits the achievable resolution required for emerging microdisplay technologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!