Introduction: Malaria is a life-threatening acute febrile illness which is affecting the lives of millions globally. Its distribution is characterized by spatial, temporal, and spatiotemporal heterogeneity. Detection of the space-time distribution and mapping high-risk areas is useful to target hot spots for effective intervention.
Methods: Time series cross sectional study was conducted using weekly malaria surveillance data obtained from Amhara Public Health Institute. Poisson model was fitted to determine the purely spatial, temporal, and space-time clusters using SaTScan™ 9.6 software. Spearman correlation, bivariate, and multivariable negative binomial regressions were used to analyze the relation of the climatic factors to count of malaria incidence.
Result: Jabitenan, Quarit, Sekela, Bure, and Wonberma were high rate spatial cluster of malaria incidence hierarchically. Spatiotemporal clusters were detected. A temporal scan statistic identified 1 risk period from 1 July 2013 to 30 June 2015. The adjusted incidence rate ratio showed that monthly average temperature and monthly average rainfall were independent predictors for malaria incidence at all lag-months. Monthly average relative humidity was significant at 2 months lag.
Conclusion: Malaria incidence had spatial, temporal, spatiotemporal variability in West Gojjam zone. Mean monthly temperature and rainfall were directly and negatively associated to count of malaria incidence respectively. Considering these space-time variations and risk factors (temperature and rainfall) would be useful for the prevention and control and ultimately achieve elimination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9087229 | PMC |
http://dx.doi.org/10.1177/11786302221095702 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!