Dacomitinib (DCB) is a second generation irreversible tyrosine kinase inhibitor (TKI) that is claimed to overcome the disadvantages of the resistance developed by the first line epidermal growth factor receptor (EGFR) TKIs. In the current study, metabolites of phase I for DCB were systematically explored. DCB reactive metabolites were also investigated in rat liver microsomes in presence of potassium cyanide or methoxylamine that were employed as capturing agents for iminium reactive intermediates and aldehyde, respectively, to form stable complexes which can be detected by LC-MS/MS. As a result, four phase I metabolites were observed with major pathway of piperidine ring hydroxylation. Additionally, two potentially reactive intermediates, one aldehyde and one iminium ions were characterized. Two different pathways of bioactivation were ultimately proposed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9090608 | PMC |
http://dx.doi.org/10.1039/c8ra06709k | DOI Listing |
J Phys Chem A
January 2025
Nanjing Institute of Technology, Nanjing 211167, China.
Cocombustion with biomass tar is a potential method for NO reduction during fossil fuel combustion. In this work, the molecular dynamic method based on the reactive force field was used to study the NO reduction by phenol, which is a typical tar model compound. Results indicate that phenol undergoes significant decomposition at 3000 K, resulting in the formation of small molecular fragments accompanied by the generation of large molecular, network-structured soot particles.
View Article and Find Full Text PDFCurr Org Synth
January 2025
Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, I.R. Iran.
Carbodiimides (R-N=C=N-R) are well-known intermediates for the preparation of a variety of N-containing compounds, including heterocycles and amide linkages. Be-cause of their high reactivity and easy availability, carbodiimides have been broadly used as building blocks in the synthesis of structurally complex and diverse heterocyclic com-pounds in multi-component reactions (MCRs). Recent advances in diversity-oriented syn-thesis with carbodiimide-based MCRs are discussed in this minireview and are classified into different sections based on the key transformation involved in the reactions, such as heteroannulation and nucleophilic addition reactions which containing metal-catalyzed re-actions, multi-component reactions, and catalyst-free reactions subsections.
View Article and Find Full Text PDFSmall
January 2025
School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
Inducing magnetic ordering in a non-ferrous layered double hydroxides (LDHs) instigates higher spin polarization, which leads to enhanced efficiency during oxygen evolution reaction (OER). In nano-sized magnetic materials, the concept of elongated grains drives domain alignment under the application of an external magnetic field. Hence, near the solid electrode interface, modified magnetohydrodynamics (MHD) positively impacts the electrocatalytic ability of non-ferrous nanocatalysts.
View Article and Find Full Text PDFSmall Methods
January 2025
Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland.
In situ monitoring is essential for catalytic process design, offering real-time insights into active structures and reactive intermediates. Electron paramagnetic resonance (EPR) spectroscopy excels at probing geometric and electronic properties of paramagnetic species during reactions. Yet, state-of-the-art liquid-phase EPR methods, like flat cells, require custom resonators, consume large amounts of reagents, and are unsuited for tracking initial kinetics or use with solid catalysts.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
ConspectusReactions of gas phase molecules with surfaces play key roles in atmospheric and environmental chemistry. Reactive uptake coefficients (γ), the fraction of gas-surface collisions that yield a reaction, are used to quantify the kinetics in these heterogeneous and multiphase systems. Unlike rate coefficients for homogeneous gas- or liquid-phase reactions, uptake coefficients are system- and observation-dependent quantities that depend upon a multitude of underlying elementary steps.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!