Vascular Health Is Associated With Functional Connectivity Decline in Higher-Order Networks of Older Adults.

Front Integr Neurosci

UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders," Institut Blood and Brain @ Caen-Normandie, Cyceron, Normandy University, Caen, France.

Published: April 2022

Background: Poor vascular health may impede brain functioning in older adults, thus possibly increasing the risk of cognitive decline and Alzheimer's disease (AD). The emerging link between vascular risk factors (VRF) and longitudinal decline in resting-state functional connectivity (RSFC) within functional brain networks needs replication and further research in independent cohorts.

Method: We examined 95 non-demented older adults using the IMAP+ cohort (Caen, France). VRF were assessed at baseline through systolic and diastolic blood pressure, body-mass-index, and glycated hemoglobin (HbA1c) levels. Brain pathological burden was measured using white matter hyperintensity (WMH) volumes, derived from FLAIR images, and cortical β-Amyloid (Aβ) deposition, derived from florbetapir-PET imaging. RSFC was estimated from functional MRI scans within canonical brain networks at baseline and up to 3 years of follow-up. Linear mixed-effects models evaluated the independent predictive value of VRF on longitudinal changes in network-specific and global RSFC as well as a potential association between these RSFC changes and cognitive decline.

Results: We replicate that RSFC increased over time in global RSFC and in the default-mode, salience/ventral-attention and fronto-parietal networks. In contrast, higher diastolic blood pressure levels were independently associated with a decrease of RSFC over time in the default-mode, salience/ventral-attention, and fronto-parietal networks. Moreover, higher HbA1c levels were independently associated with a reduction of the observed RSFC increase over time in the salience/ventral-attention network. Both of these associations were independent of brain pathology related to Aβ load and WMH volumes. The VRF-related changes in RSFC over time were not significantly associated with longitudinal changes in cognitive performance.

Conclusion: Our longitudinal findings corroborate that VRF promote RSFC alterations over time within higher-order brain networks, irrespective of pathological brain burden. Altered RSFC in large-scale cognitive networks may eventually increase the vulnerability to aging and AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9088922PMC
http://dx.doi.org/10.3389/fnint.2022.847824DOI Listing

Publication Analysis

Top Keywords

older adults
12
brain networks
12
rsfc
11
vascular health
8
functional connectivity
8
vrf longitudinal
8
diastolic blood
8
blood pressure
8
hba1c levels
8
wmh volumes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!