A simple one-pot synthesis of biocompatible and antifouling magnetite nanoparticles (FeONPs) was developed. The process involves co-precipitation and coating of zwitterionic copolymer poly[(methacrylic acid)--(2-methacryloyloxyethyl phosphorylcholine)] (PMAMPC). The influence of one-step and two-step coating methods on the performance of modified FeONP was investigated. The PMAMPC-FeONP with a narrow particle size distribution obtained from the two-step approach were highly stable in aqueous media within a wide range of pH. The particles exhibited superparamagnetic behavior with high saturation magnetization values so that they could be easily separated from solution by a magnet. Their antifouling characteristics against 2 selected proteins, lysozyme (LYZ) and bovine serum albumin (BSA), as a function of copolymer molecular weight and composition were also evaluated. Moreover, taking advantage of having carboxyl groups in the coated copolymer, the PMAMPC-FeONP were conjugated with a model biomolecular probe, biotin. The biotin-immobilized PMAMPC-FeONP were then tested for their specific capturing of a target molecule, streptavidin. The results have demonstrated the potential of PMAMPC-FeONP prepared by the two-step coating method for probe immobilization and subsequent biomagnetic separation of target molecules. The fact that the developed functionalizable magnetite nanoparticles are biocompatible and antifouling also opens up the possibility of their use in other biomedical-relevant applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9089288PMC
http://dx.doi.org/10.1039/c8ra06887aDOI Listing

Publication Analysis

Top Keywords

magnetite nanoparticles
12
simple one-pot
8
one-pot synthesis
8
biomagnetic separation
8
biocompatible antifouling
8
two-step coating
8
biocompatible zwitterionic
4
zwitterionic copolymer-stabilized
4
copolymer-stabilized magnetite
4
nanoparticles simple
4

Similar Publications

Superparamagnetic iron oxide nanoparticles (SPIONs) are known to be good MRI contrasts, but they have a high tendency to aggregate and their biocompatibility is limited. Hyaluronic acid is highly biocompatible, can provide SPION with colloidal stability, and interacts specifically with tumor cells through the CD44 receptor; therefore, it was used as a stabilizing layer. We successfully obtained SPION coated with hyaluronic acid and further functionalized it with folic acid to construct a dual-targeted system.

View Article and Find Full Text PDF

Proteomic analysis of Trichoderma harzianum secretome and their role in the biosynthesis of zinc/iron oxide nanoparticles.

Sci Rep

January 2025

Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, 7600, Argentina.

The fungal green synthesis of nanoparticles (NPs) has gained great interest since it is a cost-effective and easy handling method. The process is simple because fungi secrete metabolites and proteins capable of reducing metal salts in aqueous solution, however the mechanism remains largely unknown. The aim of this study was to analyze the secretome of a Trichoderma harzianum strain during the mycobiosynthesis process of zinc and iron nanoparticles.

View Article and Find Full Text PDF

Background: Ochratoxin A (OTA) is toxic secondary metabolites produced by fungi and can pose a serious threat to food safety and human health. Due to the high stability and toxicity, OTA contamination in agricultural products is of great concern. Therefore, the development of a highly sensitive and reliable OTA detection method is crucial to ensure food safety.

View Article and Find Full Text PDF

Magnetite Nanoparticles Encapsulated with PBS-PEG for AMF Hyperthermia.

Materials (Basel)

January 2025

University Centre for Research and Development (UCRD), Department of Physics, Chandigarh University, Mohali 140413, Punjab, India.

Novel studies on typical synthesized magnetite nanoparticles were encapsulated into a poly (butylene succinate)/poly (ethylene glycol) copolymer (PBS-PEG). PBS was chosen because of its biocompatibility characteristics necessary for biomedical applications. PEG, as part of the macromolecular structure, increases the hybrid system's solubility in an aqueous environment, increasing the circulation time of the material in the bloodstream.

View Article and Find Full Text PDF

Sentinel lymph node (SLN) detection has been widely investigated in recent years as a part of the surgical staging of women with endometrial cancer (EC), gradually overtaking lymphadenectomy (LND) in this respect. In this study, thirty EC patients, assumed as stage I, were investigated using superparamagnetic iron oxide (SPIO) as a tracer for SLN detection followed by LND. The endpoints of this research were the proportion of successful SLN detection, the average number of SLNs per patient, the percentage of bilaterally detected SLNs, and the proportion of metastatic SLNs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!