We devised a model system to study the effects of extracellular matrix proteins on the malignant phenotype of an anaplastic glioma cell line, U 343 MG-A. Well-characterized cultures derived from normal human leptomeninges were grown to confluence and maintained for 2 weeks. The leptomeningeal cells were then removed with base and detergent, leaving behind an extracellular matrix enriched in laminin, fibronectin, type I and IV collagen, and procollagen III. U 343 MG-A tumor cells planted on top of this normal extracellular matrix were profoundly growth inhibited compared with glioma cells grown on plastic alone. Glioma cells grown on the extracellular matrix developed multiple, slender processes and assumed a more differentiated astrocytic phenotype; immunostains for glial fibrillary acidic protein revealed a more extensive intracytoplasmic network of intensely staining filaments than in control glioma cells. When glioma cells grown on the extracellular matrix were analyzed by an enzyme-linked immunosorbent assay for glial fibrillary acidic protein, the amount of this intermediate filament per cell was increased 20-fold compared with glioma cells growing on plastic. The growth and differentiation of U 343 MG-A glioma cells in flasks coated with purified fibronectin or laminin was not significantly perturbed; however, glioma cell cultures grown in flasks coated with purified type I or IV collagen showed decreased cellular proliferation, stellate cell formation, and increased levels of glial fibrillary acidic protein per cell compared with glioma cells growing on plastic. Gelatin gel analysis showed that U 343 MG-A glioma cells growing on plastic secreted a 65,000-D metalloproteinase that was not secreted by glioma cells grown on the leptomeningeal extracellular matrix. We conclude that in this system, the extracellular matrix of a normal human leptomeningeal culture substantially inhibited the proliferation of and induced differentiation in an anaplastic glioma cell line. Our analysis of single components of the extracellular matrix suggests that these effects may be mediated in part by type I and IV collagen. The mechanism by which the leptomeningeal extracellular matrix inhibits glioma cell proliferation may be by diminishing tumor-associated protease secretion so that the degradation of extracellular matrix macromolecules in the tumor cell microenvironment is prevented and tumor cell migration becomes less likely.
Download full-text PDF |
Source |
---|
J Shoulder Elbow Surg
January 2025
Lerner Children's Pavilion, Hospital for Special Surgery, New York, NY, USA. Electronic address:
Background: Humeral capitellar osteochondritis dissecans (OCD) lesions can be challenging to treat. Past studies have demonstrated grafting with extracellular matrix with bone marrow aspirate concentrate (ECM-BMAC) to be a viable technique for treatment of talar dome OCD, though little literature exists regarding application of this technique to the capitellum. This study aimed to report patient-reported outcomes (PROs) and return to sport (RTS) of pediatric patients at ≥1-year postoperatively who underwent ECM-BMAC grafting for capitellar OCD lesions.
View Article and Find Full Text PDFMatrix Biol
January 2025
Department of Pharmacology & Immunology, Proteomics Center, Medical University of South Carolina, Charleston, SC. Electronic address:
Collagen stroma interactions within the extracellular microenvironment of breast tissue play a significant role in breast cancer, including risk, progression, and outcomes. Hydroxylation of proline (HYP) is a common post-translational modification directly linked to breast cancer survival and progression. Changes in HYP status lead to alterations in epithelial cell signaling, extracellular matrix remodeling, and immune cell recruitment.
View Article and Find Full Text PDFJ Control Release
January 2025
Medical 3D Printing Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China. Electronic address:
Immune cells are sensitive to the perception of mechanical stimuli in the tumor microenvironment. Changes in biophysical cues within tumor tissue can alter the force-sensing mechanisms experienced by cells. Mechanical stimuli within the extracellular matrix are transformed into biochemical signals through mechanotransduction.
View Article and Find Full Text PDFBiomater Adv
January 2025
Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India. Electronic address:
Deep cutaneous wounds, which are difficult to heal and specifically occur on dynamic body surfaces, remain a substantial healthcare challenge in clinical practice because of multiple underlying factors, including excessive reactive oxygen species, potential bacterial infection, and extensive degradation of the extracellular matrix (ECM) which further leads to the progressive deterioration of the wound microenvironment. Any available individual wound therapy, such as antibiotic-loaded cotton gauze, cannot address all these issues. Engineering an advanced multifunctional wound dressing is the current need to promote the overall healing process of such wounds.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
Department of Infection Biology, Wonkwang University School of Medicine, Iksan, 54538, Republic of Korea.
Collagen, a major component of the extracellular matrix, is crucial for the structural integrity of the Caenorhabditis elegans cuticle. While several proteins involved in collagen biosynthesis have been identified, the complete regulatory network remains unclear. This study investigates the role of CALU-1, an ER-resident calcium-binding protein, in cuticle collagen formation and maintenance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!