Noncovalent functionalization of single-walled carbon nanotubes (SWCNT) by semiconducting oxides is a majorly sought technique to retain individual properties while creating a synergetic effect for an efficient heterostructure charge transfer. Three types of electronically and optically different SWCNTs: metallic (m), semiconducting (s), and pristine (p) are functionalized by ZnO using a facile sonication method. The physicochemical and morphological properties of the ZnO-functionalized SWCNTs, m-SWCNT+ZnO, s-SWCNT+ZnO, and p-SWCNT+ZnO, are analyzed by advanced characterization techniques. Evidence of charge transfer between SWCNT and ZnO is observed with an increase in charge carrier lifetime from 3.31 ns (ZnO) to 4.76 ns (s-SWCNT+ZnO). To investigate the optimum interaction between SWCNTs and ZnO, critical coagulation concentrations (CCC) are determined using UV-vis absorption spectroscopy for m-SWCNT, s-SWCNT, and p-SWCNT using different molar concentrations of ZnO as the coagulant. The interaction and coagulation mechanisms are described by the modified DLVO theory. Due to the variation in dielectric values and electronic properties of SWCNTs, the CCC values obtained have differed: m-SWCNT (1.9 × 10), s-SWCNT (3.4 × 10), and p-SWCNT (2 × 10). An additional analysis of the aggregates and supernatants of the CCC experiments is also shown to give an insight into the interaction and coagulation processes, explaining the absence of influence exerted by sedimentation and centrifugation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9088952 | PMC |
http://dx.doi.org/10.1021/acsomega.2c00193 | DOI Listing |
ACS Nano
January 2025
Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.
Perovskite solar cells (PSCs) have emerged as low-cost photovoltaic representatives. Constructing three-dimensional (3D)/two-dimensional (2D) perovskite heterostructures has been shown to effectively enhance the efficiency and stability of PSCs. However, further enhancement of device performance is still largely limited by inferior conductivity of the 2D perovskite capping layer and its mismatched energy level with the 3D perovskite layer.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Gastroenterology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
Administering medication precisely to the inflamed intestinal sites to treat ulcerative colitis (UC), with minimized side effects, is of urgent need. In UC, the inflammation damaged mucosa contains a large number of amino groups which are positively charged, providing new opportunities for drug delivery system design. Here, we report an oral drug delivery system utilizing the tacrolimus-loaded poly (lactic-co-glycolic acid) (TAC/PLGA) particles with an adhesion coating by in situ UV-triggered polymerization of polyacrylic acid and N-hydroxysuccinimide (PAA-NHS).
View Article and Find Full Text PDFACS Nano
January 2025
School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea.
Organic photodiodes (OPDs) are a significant focus for the next-generation of light-detection technologies. However, organic semiconductors in OPDs still face key challenges, such as low carrier mobilities and limited efficiency in generating photon-induced signals, which affect the detectable resolution and dynamic range. In this study, the characterization of the interaction between organic polymeric bulk heterojunctions and two-dimensional (2D) transition metal dichalcogenides (MoS) reveals an enhancement in photocurrent due to improved photogeneration dynamics (e.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insect, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, PR China. Electronic address:
In this study, we constructed a pH/laccase dual responsive drug delivery system, denoted as IMI@(CMCS+SL)n, capable of modulating wall thickness and drug release via the layer-by-layer deposition of carboxymethyl chitosan (CMCS) and sodium lignosulfonate (SL). The IMI@(CMCS+SL)n microcapsules was characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), (energy-dispersive X-ray spectroscopy) EDS, X-ray photoelectron spectroscopy (XPS), and dynamic light scattering techniques (DLS) analysis. IMI@(CMCS+SL)n demonstrated not only a high loading capacity (exceeding 90 %) but also exhibited exceptional performance in sustained release and anti-termite activity of IMI.
View Article and Find Full Text PDFAnnu Rev Phys Chem
January 2025
1Department of Chemistry, University of Illinois Chicago, Chicago, Illinois, USA; email:
Inspired by the success of graphene, two-dimensional (2D) materials have been at the forefront of advanced (opto-)nanoelectronics and energy-related fields owing to their exotic properties like sizable bandgaps, Dirac fermions, quantum spin Hall states, topological edge states, and ballistic charge carrier transport, which hold promise for various electronic device applications. Emerging main group elemental 2D materials, beyond graphene, are of particular interest due to their unique structural characteristics, ease of synthetic exploration, and superior property tunability. In this review, we present recent advances in atomic-scale studies of elemental 2D materials with an emphasis on synthetic strategies and structural properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!