Chronic subjective tinnitus is the constant perception of a sound that has no physical source. Brain imaging studies show alterations in tinnitus patients' resting-state networks (RSNs). This scoping review aims to provide an overview of resting-state fMRI studies in tinnitus, and to evaluate the evidence for changes in different RSNs. A total of 29 studies were included, 26 of which found alterations in networks such as the auditory network, default mode network, attention networks, and visual network; however, there is a lack of reproducibility in the field which can be attributed to the use of different regions of interest and analytical methods per study, and tinnitus heterogeneity. Future studies should focus on replication by using the same regions of interest in their analysis of resting-state data, and by controlling adequately for potential confounds. These efforts could potentially lead to the identification of a biomarker for tinnitus in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9744700 | PMC |
http://dx.doi.org/10.1007/s00062-022-01170-1 | DOI Listing |
BMC Psychiatry
January 2025
College of Artificial Intelligence, Southwest University, Chongqing, China.
Background: Although childhood maltreatment (CM) is widely recognized as a transdiagnostic risk factor for various internalizing and externalizing psychological disorders, the neural basis underlying this association remain unclear. The potential reasons for the inconsistent findings may be attributed to the involvement of both common and specific neural pathways that mediate the influence of childhood maltreatment on the emergence of psychopathological conditions.
Methods: This study aimed to delineate both the common and distinct neural pathways linking childhood maltreatment to depression and aggression.
Biol Psychiatry Cogn Neurosci Neuroimaging
January 2025
School of Psychological Sciences, Sagol School of Neuroscience, Tel-Aviv University.
Background: Although combat-deployed soldiers are at a high risk for developing trauma-related psychopathology, most will remain resilient for the duration and aftermath of their deployment tour. The neural basis of this type of resilience is largely unknown, and few longitudinal studies exist on neural adaptation to combat in resilient individuals for whom a pre-exposure measurement was collected. Here, we delineate changes in the architecture of functional brain networks from pre- to post-combat in psychopathology-free, resilient participants.
View Article and Find Full Text PDFJ Clin Neurosci
January 2025
Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China; Department of Spine Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, PR China. Electronic address:
Background: Cervical spondylotic myelopathy (CSM) is a debilitating condition that affects the cervical spine, leading to neurological impairments. While the neural mechanisms underlying CSM remain poorly understood, changes in brain network connectivity, particularly within the context of static and dynamic functional network connectivity (sFNC and dFNC), may provide valuable insights into disease pathophysiology. This study investigates brain-wide connectivity alterations in CSM patients using both sFNC and dFNC, combined with machine learning approaches, to explore their potential as biomarkers for disease classification and progression.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Electrical & Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130.
Task-free brain activity affords unique insight into the functional structure of brain network dynamics and has been used to identify neural markers of individual differences. In this work, we present an algorithmic optimization framework that directly inverts and parameterizes brain-wide dynamical-systems models involving hundreds of interacting neural populations, from single-subject M/EEG time-series recordings. This technique provides a powerful neurocomputational tool for interrogating mechanisms underlying individual brain dynamics ("precision brain models") and making quantitative predictions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!