The role of potassium channels in the proliferation and migration of endometrial adenocarcinoma HEC1-A cells.

Mol Biol Rep

Department of Medical Pharmacology, Faculty of Medicine, University of Mersin, Campus Çiftlikköy, 33343, Mersin, Turkey.

Published: August 2022

Background: Endometrial cancer is the most common gynecological cancer in developed countries. Potassium channels, which have many types, are suggested to play a major role in cancer progression. However, their role in endometrial cancer has not been fully investigated. We aimed to demonstrate whether the ATP-sensitive potassium channel blocker glibenclamide, voltage-sensitive potassium channel blocker 4-aminopyridine, non-selective (voltage-sensitive and calcium-activated) potassium channels blocker tetraethylammonium and potassium chloride (KCl) have any effect on the proliferation and migration of HEC1-A cells.

Methods And Results: Proliferation and migration were evaluated by real-time cell analysis (xCELLigence system) and wound healing assays, respectively. Proliferation was reduced by glibenclamide (0.1 and 0.2 mM, P < 0.05 and P < 0.01, respectively), 4-aminopyridine (10 and 20 mM, P < 0.001) and tetraethylammonium (10 and 20 mM, P < 0.01 and P < 0.001, respectively). However, KCl did not change the proliferation. Migration was reduced by glibenclamide (0.01, 0.1 and 0.2 mM, P < 0.001, P < 0.001 and P < 0.01, respectively) and 4-aminopyridine (10 and 20 mM, P < 0.05 and P < 0.01, respectively). Tetraethylammonium did not change migration. However, KCl reduced it (10, 25 and 50 mM, P < 0.05, P < 0.01 and P < 0.01, respectively). Both proliferation and migration were reduced by glibenclamide and 4-aminopyridine. However, tetraethylammonium only reduced proliferation and KCl only reduced migration.

Conclusions: Potassium channels have an important role in HEC1-A cell proliferation and migration and potassium channel blockers needs to be further investigated for their therapeutic effect in endometrial cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-022-07546-3DOI Listing

Publication Analysis

Top Keywords

potassium channels
12
proliferation migration
12
endometrial cancer
8
potassium channel
8
channel blocker
8
potassium
5
role potassium
4
proliferation
4
channels proliferation
4
migration endometrial
4

Similar Publications

The hERG1 potassium channel conducts the cardiac repolarizing current, IKr. hERG1 has emerged as a therapeutic target for cardiac diseases marked by prolonged actional potential duration (APD). Unfortunately, many hERG1 activators display off-target and proarrhythmic effects that limit their therapeutic potential.

View Article and Find Full Text PDF

Background: Familial hemiplegic migraine (FHM) types 1-3 are associated with protein-altering genetic variants in , and , respectively. These genes have also been linked to epilepsy. Previous studies primarily focused on phenotypes, examining genetic variants in individuals with characteristic FHM symptoms.

View Article and Find Full Text PDF

Aminopyridines belong to a class of compounds that are monoamino and diamino derivatives of pyridine. They work primarily by blocking voltage-gated potassium channels in a dose-dependent manner. Essential heterocycles used extensively in synthetic, natural products, and medicinal chemistry are aminopyridine and its derivatives.

View Article and Find Full Text PDF

Members of the KCNE family are accessory subunits that modulate voltage-gated potassium channels. One member, KCNE4, has been shown to inhibit the potassium ion current in these channels. However, little is known about the structure, dynamics, and mode of inhibition of KCNE4, likely due to challenges in overexpressing and purifying the protein.

View Article and Find Full Text PDF

Two-pore-domain potassium channels (K2P) family is widely expressed in many human cell types and organs, which has important regulatory effect on physiological processes. K2P is sensitive to a variety of chemical and physical stimuli, and they have also been critically implicated in transmission of neural signal, ion homeostasis, cell development and death, and synaptic plasticity. Aberrant expression and dysfunction of K2P channels are involved in a range of diseases, including autoimmune, central nervous system, cardiovascular disease and others.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!