Objectives: Results from previous ex-vivo continuous renal replacement therapy (CRRT) models have successfully demonstrated similar extraction coefficients (EC) identified from in-vivo clinical trials. The objectives of this study are to develop an ex-vivo in-vivo correlation (EVIVC) model to predict drug clearance for commonly used antiepileptics and to evaluate similarity in drug extraction across different CRRT modalities to extrapolate dosing recommendations.
Methods: Levetiracetam, lacosamide, and phenytoin CRRT clearance was evaluated using the Prismaflex CRRT system and M150 hemodiafilters using an albumin containing normal saline (ALB-NS) vehicle with 3 different albumin concentrations (2 g/dL, 3 g/dL, and 4 g/dL) and a human plasma vehicle at 3 different effluent flow rates (1 L/hr, 2 L/hr, and 3 L/hr). Blood and effluent/dialysate concentrations were collected after circuit priming. ECs were calculated for each drug, modality, vehicle, and experimental arm combination.
Results: The calculated average EC for levetiracetam and lacosamide was approximated to the fraction unbound from plasma protein. Human plasma and ALB-NS vehicles demonstrated adequate prediction of in-vivo CRRT clearance. Geometric mean ratios indicated similarity in extraction coefficients when comparing between hemofiltration and hemodiafiltration modalities and between filtration and dialysis modalities at effluent flow rates ≤ 2L/hr. Evaluation of phenytoin provided inconsistent findings with regards to extraction coefficient similarity across different CRRT modalities.
Conclusion: The findings indicate that an ex-vivo study can be used as a surrogate to predict in-vivo levetiracetam and lacosamide clearance in patients receiving CRRT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11095-022-03287-x | DOI Listing |
Seizure
January 2025
Department of Pharmacy Practice, Auburn University Harrison College of Pharmacy, Auburn, AL 36049, United States.
Purpose: On November 28, 2023, the U.S. FDA issued a Drug Safety Communication, warning that antiseizure medications (ASMs) levetiracetam and clobazam can cause a rare but serious reaction, drug reaction with eosinophilia and systemic symptoms (DRESS).
View Article and Find Full Text PDFDrugs Real World Outcomes
January 2025
Kabul University of Medical Sciences, Kabul, Afghanistan.
Anti-seizure medications (ASMs) are specific types of anticonvulsants used to treat epileptic seizures. However, several studies have shown an association between ASMs and an increased risk of hematological disorders, such as thrombocytopenia, aplastic anemia, and platelet function disorders leading to prolonged bleeding times. This review explores the existing literature on this topic, investigating a wide variety of ASMs, ranging from first-generation medications to newer ones.
View Article and Find Full Text PDFBMJ Case Rep
December 2024
Department of Psychiatry, Osaka University, Suita, Osaka, Japan.
Temporal lobe epilepsy (TLE) can cause different types of memory impairments. Here, we report a case of immediate improvement of memory impairment following antiepileptic drug (AED) treatment in a patient with TLE with amygdala enlargement (TLE-AE), who rapidly developed recurrence. The patient was a man in his 60s whose family members complained of his amnesia.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Department of Epileptology and Neurology, RWTH Aachen University, Aachen, Germany.
Objective: Resistance to antiseizure medications (ASMs) is a major challenge in the treatment of patients with epilepsy. Despite numerous newly marketed ASMs, the proportion of drug-resistant people with epilepsy has not significantly decreased over the years. Therefore, novel and innovative seizure models for preclinical drug screening are highly desirable.
View Article and Find Full Text PDFCureus
November 2024
Pulmonology and Critical Care, Howard University Hospital, Washington, DC, USA.
Rhabdomyolysis, a severe condition marked by the breakdown of muscle tissue, leads to the release of intracellular contents into the bloodstream. This condition can be triggered by a range of factors, including intense physical activity, traumatic injuries, certain medications, and infections. Diagnosis typically involves detecting elevated creatine phosphokinase (CPK) levels alongside characteristic clinical symptoms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!