Purpose: In this study, we sought to explore the function of seven important enzymes (MSMO1, EBP, HMGCS1, IDI2, DHCR7, FDFT1, and SQLE) involved in cholesterol biosynthesis especially SQLE in PDAC therapy.
Methods And Results: The TCGA and Oncomine dataset were used to explore the expression of the seven enzymes in normal and cancerous pancreatic individual, and their anti-proliferation efficiency against PDAC cells was measured by cell viability assay. Expression level and prognostic values of SQLE were evaluated by western blot and Kaplan-Meier analysis. The influence of SQLE knockdown by shRNA in PDAC cells was assessed by transwell, colony formation and cell cycle analysis. RNA-seq and GSEA were utilized to investigate the potential mechanisms. The synergistic effect of SQLE inhibitor, terbinafine, combined with six chemotherapeutic drugs in PDAC cells was tested by CCK-8 method. We demonstrated that downregulation of those enzymes especially SQLE significantly suppressed PDAC cells survival. SQLE was upregulated in PDAC cell lines, and the elevated level of SQLE was correlated with poor prognosis in pancreatic cancer samples. SQLE knockdown could significantly inhibit the proliferation and migration of PDAC cells. Cell cycle was blocked in S phase after SQLE silencing. Mechanistically, GSEA analysis with RNA-seq data revealed that SQLE silencing negatively mediated mTORC1 and TNFα/NF-κB signaling pathways. Besides, SQLE inhibitor terbinafine enhanced chemotherapeutic sensitivity of the six compounds.
Conclusions: This study demonstrated that SQLE was a novel target for PDAC therapy. The synergism role of SQLE inhibition and chemotherapy may be potential therapeutic strategy for pancreatic cancer treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11033-022-07504-z | DOI Listing |
Mol Oncol
January 2025
System Biology, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Japan.
Pancreatic ductal adenocarcinoma (PDAC) is a disease with poor prognosis due to diagnostic and therapeutic limitations. We previously identified cystatin A (CSTA) as a PDAC biomarker and have conducted the present study to investigate the antitumor effects of CSTA. PDAC murine models were established with genetically modified PAN02 tumor cell lines to evaluate the antitumor immune response.
View Article and Find Full Text PDFGut
January 2025
Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
Background: The immune suppression mechanisms in pancreatic ductal adenocarcinoma (PDAC) remain unknown, but preclinical studies have implicated macrophage-mediated immune tolerance. Hence, pathways that regulate macrophage phenotype are of strategic interest, with reprogramming strategies focusing on inhibitors of phosphoinositide 3-kinase-gamma (PI3Kγ) due to restricted immune cell expression. Inhibition of PI3Kγ alone is ineffective in PDAC, despite increased infiltration of CD8+ T cells.
View Article and Find Full Text PDFArch Biochem Biophys
January 2025
Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy. Electronic address:
Lysine-specific demethylase 1 (LSD1) is a key regulator in cancer epigenetic, and its activity is reliant on flavin adenine dinucleotide (FAD) as a cofactor. In this study, we investigated the correlation between LSD1 and FAD synthase isoform 2 (FADS2) protein levels in pancreatic ductal adenocarcinoma (PDAC) cell lines. We first assessed LSD1 protein and mRNA levels in mutant p53-expressing PANC-1 and MiaPaCa2 cells and p53-null AsPc-1 cells, compared to human pancreatic ductal epithelial (HPDE) controls.
View Article and Find Full Text PDFLife Sci
January 2025
Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida 201313, Uttar Pradesh, India. Electronic address:
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and grave malignancies with confined and ineffective therapeutic options. XPO1 is a critical regulator of nuclear export and activation of tumor suppressor proteins. The present study evaluated the therapeutic potential and molecular mechanisms of XPO1 inhibition against PDAC.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
Background: Treatment with immunotherapy can elicit varying responses across cancer types, and the mechanistic underpinnings that contribute to response vrsus progression remain poorly understood. However, to date there are few preclinical models that accurately represent these disparate disease scenarios.
Methods: Using combinatorial radio-immunotherapy consisting of PD-1 blockade, IL2Rβγ biased signaling, and OX40 agonism we were able to generate preclinical tumor models with conflicting responses, where head and neck squamous cell carcinoma (HNSCC) models respond and pancreatic ductal adenocarcinoma (PDAC) progresses.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!