The CsSnBrphotodetectors are fabricated by thermal evaporation and 75 °Cannealing, and the effect ofannealing on the morphology, structure, exciton dynamics and photoresponse of thermally evaporated CsSnBrfilms are investigated. Especially, temperature dependent steady-state photoluminescence (PL) and transient PL decaying have been analyzed in details for understanding the exciton dynamics. Meanwhile, effect of annealing on the activation energy for trap sites (), exciton binding energy (), activation energy for interfacial trapped carriers (Δ), trap densities and carriers mobilities are studied and the annealed (A-CsSnBr) reveals obviously lowerand trap density together with notably higher carrier mobility than those of the unannealed (UA-CsSnBr). Temperature dependence of the integrated PL intensity can be ascribed to the combining effect of the exciton dissociation, exciton quenching through trap sites and thermal activation of trapped carriers. The temperature dependent transient PL decaying analysis indicates that the PL decaying mechanism at low and high temperature is totally different from that in intermediate temperature range, in which combing effect of free exciton and localized state exciton decaying prevail. The beneficial effects of theannealing on the photoresponse performance of the CsSnBrfilms can be demonstrated by the remarkable enhancement of the optimal responsivity () afterannealing which increases from less than 1 A Wto 1350 A Was well as dramatically improved noise equivalent power, specific detectivity* and Gain ().
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ac6f11 | DOI Listing |
Nanoscale
January 2025
School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India.
The performance of an optoelectronic device is largely dependent on the light harvesting properties of the active material as well as the dynamic behaviour of the photoexcited charge carriers upon absorption of light. Recently, atomically thin two-dimensional transition metal dichalcogenides (2D TMDCs) have garnered attention as highly prospective materials for advanced ultrathin solar cells and other optoelectronic applications, owing to their strong interaction with electromagnetic radiation, substantial optical conductivity, and impressive charge carrier mobility. WSe is one such extremely promising solar energy material.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Hunan Key Laboratory of Super-Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China.
Two-dimensional (2D) layered materials have received much attention due to the unique properties stemming from their van der Waals (vdW) interactions, quantum confinement, and many-body interactions of quasi-particles, which drive their exotic optical and electronic properties, making them critical in many applications. Here, we review our past years' findings, focusing on many-body interactions in 2D layered materials, including phonon anharmonicity, electron-phonon coupling (), exciton dynamics, and phonon anisotropy based on temperature (polarization)-dependent Raman spectroscopy and Photoluminescence (PL). Our review sheds light on the role of quasi-particles in tuning the material properties, which could help optimize 2D materials for future applications in electronic and optoelectronic devices.
View Article and Find Full Text PDFBiophys J
January 2025
Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom. Electronic address:
Photosynthetic organisms rely on a network of light-harvesting protein-pigment complexes to efficiently absorb sunlight and transfer excitation energy to reaction centre proteins where charge separation occurs. In photosynthetic purple bacteria, these complexes are embedded within the cell membrane, with lipid composition affecting complex clustering, thereby impacting inter-complex energy transfer. However, the impact of the lipid bilayer on intra-complex excitation dynamics is less understood.
View Article and Find Full Text PDFACS Nano
January 2025
Beijing Academy of Quantum Information Sciences, Beijing 100193, P. R. China.
The quantum-well-like two-dimensional lead-halide perovskites exhibit strongly confined excitons due to the quantum confinement and reduced dielectric screening effect, which feature intriguing excitonic effects. The ionic nature of the perovskite crystal and the "softness" of the lattice induce the complex lattice dynamics. There are still open questions about how the soft lattices decorate the nature of excitons in these hybrid materials.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
Light-driven spin hyperpolarization of organic molecules is a crucial technique for spin-based applications such as quantum information science (QIS) and dynamic nuclear polarization (DNP). Synthetic chemistry provides the design of spins with atomic precision and enables the scale-up of individual spins to hierarchical structures. The high designability and extended pore structure of metal-organic frameworks (MOFs) can control interactions between spins and guest molecules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!