Surfactants-mediated the enhanced mobility of tetracycline in saturated porous media and its variation with aqueous chemistry.

Chemosphere

Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China. Electronic address:

Published: September 2022

Knowledge of the mobility of tetracycline (TC) antibiotics in porous media is critical to understand their potential environmental influences. The transport characteristics of TC in sand columns with three different surfactants, including Tween 80, sodium dodecylbenzene sulfonate (SDBS), and didodecyldimethylammonium bromide (DDAB) under various conditions were investigated in this study. Results demonstrated that all surfactants enhanced TC transport under neutral conditions (10 mM NaCl at pH 7.0). The observation was attributed mostly to deposition site competition, higher electrostatic repulsion between TC molecules and sand grains, steric hindrance, and the increase of TC hydrophilicity. Furthermore, the order of the transport-enhancement effects was generally observed as follows: DDAB > SDBS > Tween 80. The trend was controlled by the variation in the physicochemical properties of surfactants. It was noticed that the presence of Cu (a model divalent cation) in the background solution, the cation-bridging contributed to the promotion effects of DDAB or Tween 80 on TC mobility. Interestingly, SDBS considerably suppressed TC transport due to the precipitation of SDBS-Cu complexes onto sand surfaces. Moreover, the enhancement order of surfactants at pH 5.0 was similar to that pH 7.0. However, DDAB could inhibit TC transport in sand columns at pH 9.0, which were mainly caused by the decrease of electrostatic repulsion and the hydrophobicity induced by the binding cationic surfactant. Findings from this work provide novel insight into involvement of surfactants in antibiotic transport behaviors in the subsurface environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.134887DOI Listing

Publication Analysis

Top Keywords

mobility tetracycline
8
porous media
8
sand columns
8
electrostatic repulsion
8
transport
5
surfactants
5
surfactants-mediated enhanced
4
enhanced mobility
4
tetracycline saturated
4
saturated porous
4

Similar Publications

Introduction: This study aimed to understand the origin and to explain the maintenance of extended-spectrum β-lactamase (ESBL) isolated from food-producing animals in a third-generation cephalosporin (3GC)-free farm.

Methods: Culture and molecular approaches were used to test molecules other than 3GC such as antibiotics (tetracycline and oxytetracycline), antiparasitics (ivermectin, flumethrin, fenbendazol, and amitraz), heavy metal [arsenic, HNO, aluminum, HNO, cadmium (CdSO), zinc (ZnCl), copper (CuSO), iron (FeCl), and aluminum (AlSO)], and antioxidant (butylated hydroxytoluene) as sources of selective pressure. Whole-genome sequencing using short read (Illumina™) and long read (Nanopore™) technologies was performed on 34 genomes.

View Article and Find Full Text PDF
Article Synopsis
  • RamA is a crucial regulator in bacteria, enhancing resistance to tetracycline-class antibiotics by activating the operon responsible for multidrug resistance.
  • The deletion of RamA leads to significantly reduced transcription levels of this operon, while restoring RamA reinstates normal function.
  • The study highlights RamA's role in bacterial membrane stability and suggests potential pathways for developing new antimicrobial treatments against resistant strains.
View Article and Find Full Text PDF

MXene-based composite photocatalysts for efficient degradation of antibiotics in wastewater.

Sci Rep

December 2024

Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran.

MXene-based (nano)materials have recently emerged as promising solutions for antibiotic photodegradation from aquatic environments, yet they are limited by scalability, stability, and selectivity challenges in practical settings. We formulated FeO-SiO/MXene ternary nano-photocomposites via coupled wet impregnation and sonochemistry approach for optimised tetracycline (TC) removal (the second most used antibiotic worldwide) from water using response surface methodology-central composite design (RSM-CCD). The photocatalysts containing various loading of FeO/SiO (5-45 wt%) on the MXene with a range of calcination temperatures (300-600 °C) via RSM optimisation were synthesised, characterised regarding crystallinity properties, surface morphology, binding energy, and light absorption capability, and analysed for TC degradation efficiency.

View Article and Find Full Text PDF

Deciphering the antibiotic resistome in stratified source water reservoirs in China: Distribution, risk, and ecological drive.

J Hazard Mater

December 2024

Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China. Electronic address:

The proliferation and dissemination of antibiotic resistance genes (ARGs) in source water reservoirs may pose a threat to human health. This study investigated the antibiotic resistance in stratified reservoirs in China across different seasons and spatial locations. In total, 120 ARG subtypes belonging to 15 ARG types were detected with an abundance ranging from 171.

View Article and Find Full Text PDF

Nitrogen-phosphorus codoped biochar prepared from tannic acid for degradation of trace antibiotics in wastewater.

Environ Res

February 2025

Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, PR China. Electronic address:

This study was designed to develop a one-step pyrolysis process that could efficiently activate peroxymonosulfate (PMS) and degrade tetracycline hydrochloride (TCH) by producing N, and P codoped carbon materials (NPTC-800). Furthermore, it exhibited a high specific surface area (658 cm), a larger pore volume (0.3 cm), and a certain content of heteroatoms (nitrogen and phosphorus).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!