The dry root and rhizome of Panax ginseng C. A. Mey has garnered much interest owing to its medicinal properties against diabetes and cardiovascular diseases. In this study, an ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS)-based metabolomics approach was used to illustrate the therapeutic mechanisms of ginseng extract on the serum and urinary metabolic profiles in streptozotocin-induced type 1 diabetes mellitus (T1DM) rats. Pharmacological and renal parameters in response to the administration of ginseng were also evaluated. In total, 16 serum endogenous metabolites and 14 urine endogenous metabolites, including pyruvic acid, indoleacetic acid, and phenylacetylglycine, were identified as potential biomarkers for diabetes. Pathway enrichment and network analysis revealed that the biomarkers modulated by ginseng were primarily involved in phenylalanine and pyruvate metabolism, as well as in arginine biosynthesis. Moreover, the levels of several renal injury-related biomarkers in T1DM rats were significantly restored following treatment with ginseng. The administration of the extract helped maintain tissue structure integrity and ameliorated renal injury. The findings suggest that the regulatory effect of ginseng extract on T1DM involves metabolic management of diabetic rats, which subsequently attenuates T1DM-induced early renal dysfunction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S1875-5364(22)60175-4DOI Listing

Publication Analysis

Top Keywords

panax ginseng
8
ginseng mey
8
diabetic rats
8
ginseng extract
8
t1dm rats
8
endogenous metabolites
8
ginseng
7
renal
5
metabolomics analysis
4
analysis reveals
4

Similar Publications

Panax ginseng C. A. Meyer (ginseng) neutral polysaccharides have been proven to be an immune enhancer, but their digestion and fermentation characteristics are unclear.

View Article and Find Full Text PDF

Vanillic Acid (VA) is an aromatic acid extracted from traditional Chinese medicine such as Angelica sinensis and Panax ginseng, which has demonstrated potent anti-cancer activity, inhibiting the onset and progression of various malignant tumors. This review highlights the principal mechanism by which VA exerts its anticancer activity, including apoptosis induction, specifically promoting the generation of intracellular reactive oxygen species (ROS), which in turn triggers mitochondrial apoptosis. Furthermore, VA disrupts the cancer cell cycle, arresting most cancer cells at the G1 phase, curtails cell migration, invasion, angiogenesis, and potentiates the therapeutic efficacy of chemotherapeutic drugs, all while minimizing adverse reactions.

View Article and Find Full Text PDF

DNA methylation plays a crucial role in regulating fruit ripening and seed development. It remains unknown about the dynamic characteristics of DNA methylation and its regulation mechanisms in morpho-physiological dormancy (MPD)-typed seeds with recalcitrant characteristics. The Panax notoginseng seeds are defined by the MPD and are characterized by a strong sensitivity to dehydration during the after-ripening process.

View Article and Find Full Text PDF

genes are essential for plant development and secondary metabolism. The majority of genes within a genome exist in a gene family, each with specific functions. Ginseng is an herb used in medicine for its potential health benefits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!