Poly- and perfluoroalkyl substances (PFASs) are a group of synthetic organic surfactants that have become a global concern because of their toxicity and widespread presence in the aquatic environment and organisms globally. In this study, a new analytical method has been developed and validated for the analysis of 15 perfluorinated compounds in different water matrices: river water, drinking water and seawater. Water extraction was performed in anion exchange solid phase extraction cartridges, and extracts were analysed by liquid chromatography in tandem with mass spectrometry. Recoveries for target analytes were between 35 and 120%, depending on the water matrix. Method detection limits were in the range of 0.5-17 ng L. The validated method was applied to the determination of perfluorinated compounds in water samples around Ireland. Eight compounds out of fifteen were detected at least in one sample. Measured concentrations were higher in river water than seawater, and drinking water had the lowest levels, although still detectable for a considerable amount of compounds. The most prevalent compounds were PFPeA, PFOA and PFHxA, present in all types of water, and they had the highest concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2ay00300gDOI Listing

Publication Analysis

Top Keywords

water
10
poly- perfluoroalkyl
8
perfluoroalkyl substances
8
substances pfass
8
water samples
8
perfluorinated compounds
8
compounds water
8
river water
8
drinking water
8
water seawater
8

Similar Publications

A novel cross-priming amplification technique combined with lateral flow strips for rapid and visual detection of zoonotic Toxoplasma gondii.

Vet Parasitol

January 2025

Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China. Electronic address:

Toxoplasma gondii, an obligate intracellular protozoan, infects almost all warm-blooded animals and humans, with felines serving as its sole definitive hosts. Cats release T. gondii oocysts into the environment through feces, contributing to environmental contamination that can lead to toxoplasmosis in humans upon exposure through ingestion of contaminated food, water, or soil.

View Article and Find Full Text PDF

Climate change is rapidly altering Arctic marine environments, leading to warmer waters, increased river discharge, and accelerated sea ice melt. The Hudson Bay Marine System (HBMS) experiences the fastest rate of sea ice loss in the Canadian North resulting in a prolonged open water season during the summer months. We examined microbial communities in the Hudson Strait using high throughput 16s rRNA gene sequencing during the peak of summer, in which the bay was almost completely ice-free, and air temperatures were high.

View Article and Find Full Text PDF

Exploring P-(Fe,V)-Codoped Metastable-Phase β-NiMoO for Improving the Performance of Overall Water Splitting.

Inorg Chem

January 2025

School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China.

It is especially essential to develop high-performance and low-cost nonprecious metal catalysts for large-scale hydrogen production. A large number of electrochemical catalysts composited by transition metal centers has been reported; however, it is still a great challenge to design and manipulate target electrocatalysts to realize high overall water-splitting activity at the atomic level. Herein, we develop totally new P-(Fe,V)-codoped metastable-phase β-NiMoO.

View Article and Find Full Text PDF

Background: Millions worldwide are exposed to elevated levels of arsenic that significantly increase their risk of developing atherosclerosis, a pathology primarily driven by immune cells. While the impact of arsenic on immune cell populations in atherosclerotic plaques has been broadly characterized, cellular heterogeneity is a substantial barrier to in-depth examinations of the cellular dynamics for varying immune cell populations.

Objectives: This study aimed to conduct single-cell multi-omics profiling of atherosclerotic plaques in apolipoprotein E knockout () mice to elucidate transcriptomic and epigenetic changes in immune cells induced by arsenic exposure.

View Article and Find Full Text PDF

Waste Heat and Habitability: Constraints from Technological Energy Consumption.

Astrobiology

January 2025

Department of Aerospace, Physics and Space Sciences, Florida Institute of Technology, Melbourne, Florida, USA.

Waste heat production represents an inevitable consequence of energy conversion as per the laws of thermodynamics. Based on this fact, by using simple theoretical models, we analyze constraints on the habitability of Earth-like terrestrial planets hosting putative technological species and technospheres characterized by persistent exponential growth of energy consumption and waste heat generation. In particular, we quantify the deleterious effects of rising surface temperature on biospheric processes and the eventual loss of liquid water.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!