Ozone (O) gas is a double-sided weapon. It provides a shield that protects life on earth from the harmful ultraviolet (UV) rays, but ground-level O is considered an urban air pollutant. So, a rat model of chronic O inhalation was established to assess the biochemical and morphological alterations in the lung tissue and to investigate the ameliorative effects of bone marrow-derived mesenchymal stem cells (BMSCs) with or without hypoxia pre-treatment. Forty-two adult male albino rats were divided into four groups: control, ozone-exposed, normoxic BMSC-treated, and hypoxic BMSC-treated groups. Lung tissue sections were processed for light and electron microscope examination, immunohistochemical staining for caspase 3, and iNOS. Quantitative real-time PCR for IL-1α, IL-17, TNF-α, and Nrf2 mRNA gene expression were also performed. Chronic O exposure caused elevated inflammatory cytokines and decreased antioxidant Nrf2 mRNA expression. Marked morphological alterations with increased collagen deposition and elevated apoptotic markers and iNOS were evident. BMSC treatment showed immunomodulatory (decreased inflammatory cytokine gene expression), antioxidant (increased Nrf2 expression and decreased iNOS), and anti-apoptotic (decreased caspase3 expression) effects. Consequently, ameliorated lung morphology with diminished collagen deposition was observed. Hypoxia pretreatment enhanced BMSC survival by MTT assay. It also augmented the previously mentioned effects of BMSCs on the lung tissue as proved by statistical analysis. Lung morphology was similar to that of control group. In conclusion, hypoxia pretreatment represents a valuable intervention to enhance the effects of MSCs on chronic lung injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9287250 | PMC |
http://dx.doi.org/10.1007/s00441-022-03627-8 | DOI Listing |
World J Gastrointest Surg
December 2024
State Key Laboratory of Organ Failure Research, Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China.
Background: Intestinal ischemiareperfusion (I/R) injury (II/RI) is a critical condition that results in oxidative stress, inflammation, and damage to multiple organs. Zinc, an essential trace element, offers protective benefits in several tissues during I/R injury, but its effects on intestinal II/RI remain unclear.
Aim: To investigate the effects of zinc pretreatment on II/RI and associated multiorgan damage.
J Cell Mol Med
December 2024
Institute of Cardiovascular Surgical Diseases, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
Despite improvements in interventional techniques leading to faster myocardial reperfusion postmyocardial infarction, there has been a significant rise in the occurrence of myocardial ischaemia/reperfusion injury (MI/RI). A deeper understanding of the underlying mechanisms of MI/RI could offer a crucial approach to reducing myocardial damage and enhancing patient outcomes. This study examined the myocardial protective properties of puerarin (PUE) in the context of MI/RI using hypoxia/reoxygenation (H/R) or ischaemia/reperfusion (I/R) injury models were employed in H9c2 cells and C57BL/6 mice.
View Article and Find Full Text PDFWound Repair Regen
December 2024
Department of Zoology, Trivenidevi Bhalotia College, Raniganj, West Bengal, India.
Hypoxia-mediated cardiac tissue injury and its repair or regeneration are one of the major health management challenges globally. Unlike mammals, lower vertebrate species such as zebrafish (Danio rerio) represent a natural model to study cardiac injury, repair and regeneration. Thyroxine (T3) has been hypothesised to be one of the endocrine factors responsible for the evolutionary trade-off for acquiring endothermy and regenerative capability in higher vertebrates.
View Article and Find Full Text PDFInvest New Drugs
December 2024
Division of Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.
Antiangiogenic drugs may cause vascular normalization and correct hypoxia in tumors, shifting cells to mitochondrial respiration as the primary source of energy. In turn, the addition of an inhibitor of mitochondrial respiration to antiangiogenic therapy holds potential to induce synthetic lethality. This study evaluated the mitochondrial inhibitor ME-344 in combination with bevacizumab in patients with refractory metastatic colorectal cancer (mCRC).
View Article and Find Full Text PDFInt J Nanomedicine
December 2024
Department of Respiratory Disease, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121000, People's Republic of China.
Introduction: Pulmonary hypertension (PH) is a progressive and life-threatening condition. Recent research has demonstrated that exosomes derived from mesenchymal stem cells (MSC) exhibit significant therapeutic potential in the treatment of PH. The composition of these exosomes is often substantially influenced by the characteristics of their parental cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!