Carboxymethyl chitosan assembled piezoelectric biosensor for rapid and label-free quantification of immunoglobulin Y.

Carbohydr Polym

Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China; Shenzhen Research Institute, Wuhan University, Shenzhen 518063, China. Electronic address:

Published: August 2022

Immunoglobulin Y (IgY) proves advantageous to IgG in prophylaxis and diagnosis. Quantification of IgY is therefore becoming a topic of interest. Here, we demonstrate a piezoelectric biosensor with carboxymethyl chitosan (CMCS) as the immobilization matrix. Gelation and hydrophilic nature of CMCS are favored to form a crosslinked matrix for antibody immobilization, and a comparison was made between carboxymethyl cellulose (CMC) and CMCS to investigate the benefits of such substitution. Calibration from 500 ng/mL to 200 μg/mL was established in buffer with the detection limit (LOD) down to 270 ng/mL, confirming its feasibility. As-prepared biosensor effectively prevents non-specific binding of bovine serum albumin (BSA) and lysozyme. Each real-time assay took 15 min including sensor regeneration, which can be further reduced to 4 min for signal readout only, ready for both repeated measurements after regeneration and disposable devices. Thus, as-prepared biosensor offers a rapid, label-free and cost-effective approach for IgY quantification.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2022.119482DOI Listing

Publication Analysis

Top Keywords

carboxymethyl chitosan
8
piezoelectric biosensor
8
rapid label-free
8
as-prepared biosensor
8
chitosan assembled
4
assembled piezoelectric
4
biosensor
4
biosensor rapid
4
label-free quantification
4
quantification immunoglobulin
4

Similar Publications

Preparation of dual supramolecular EGCG-carboxymethyl chitosan: Structure, antioxidant and anti-inflammatory properties.

Int J Biol Macromol

January 2025

Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China. Electronic address:

In the field of cosmetics, epigallocatechin gallate (EGCG) is highly valued for its multiple effects such as delaying photoaging, whitening, anti-allergy, acne removal, astringency, and moisturizing. However, due to the active chemical properties of EGCG, there are challenges in terms of stability and transdermal absorption, which limits its widespread application in cosmetics. Therefore, we utilized supramolecular modification technology to form supramolecular carboxymethyl chitosan-EGCG-trehalose (CC-EGCG) by combining EGCG with carboxymethyl chitosan and trehalose, enhancing its stability.

View Article and Find Full Text PDF

An immunoregulatory and metabolism-improving injectable hydrogel for cardiac repair after myocardial infarction.

Regen Biomater

November 2024

School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.

The hypoxia microenvironment post-myocardial infarction (MI) critically disturbs cellular metabolism and inflammation response, leading to scarce bioenergy supplying, prolonged inflammatory phase and high risk of cardiac fibrosis during cardiac restoration. Herein, an injectable hydrogel is prepared by Schiff base reaction between fructose-1,6-bisphosphate (FBP)-grafted carboxymethyl chitosan (CF) and oxidized dextran (OD), followed by loading fucoidan-coated baicalin (BA)-encapsulated zein nanoparticles (BFZ NPs), in which immunoregulatory and metabolism improving functions are integrally included. The grafted FBP serves to enhance glycolysis and provide more bioenergy for cardiomyocytes survival under hypoxia microenvironment, and elevating cellular antioxidant capacity pentose phosphate pathway.

View Article and Find Full Text PDF

To design a multifunctional nanozyme hydrogel with antibacterial, photo-responsive nitric oxide-releasing, and antioxidative properties for promoting the healing of infected wounds. We first developed ultra-small silver nanoparticles (NPs)-decorated sodium nitroprusside-doped Prussian blue (SNPB) NPs, referred to as SNPB@Ag NPs, which served as a multifunctional nanozyme. Subsequently, this nanozyme, together with geniposide (GE), was incorporated into a thermo-sensitive hydrogel, formulated from Poloxamer 407 and carboxymethyl chitosan, creating a novel antibacterial wound dressing designated as GE/SNPB@Ag hydrogel.

View Article and Find Full Text PDF

The application of biodegradable chelating agents in phytoremediation is a promising approach. This study aimed to investigate the effects and roles of underlying mechanisms of water-soluble carboxymethyl chitosan (WSCC) and rhamnolipids (RLs) on the remediation of Cd-contaminated soil by Hylotelephium spectabile. WSCC and RLs mediated the growth of H.

View Article and Find Full Text PDF

This study aimed to develop ultrasonically-assisted, alcohol-free, and noncorrosive aqueous zein/turmeric essential oil (TEO)-loaded nanoemulsions (NEs) to stimulate pullulan/carboxymethyl chitosan (P/CMCS)-based edible films for mango fruit preservation. The influence of innovative sonicated zein/TEO-based NEs (ZTNEs) as nanofillers on the physico-mechanical characteristics of the resulting P/CMCS edible films was investigated. A stable and well-dispersed ZTNE was achieved using 20 % zein with 10 min of ultrasound treatment, leading to a reduced droplet size (194.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!