A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Testing and validation of reciprocating positive displacement pump for benchtop pulsating flow model of cerebrospinal fluid production and other physiologic systems. | LitMetric

Background: The flow of physiologic fluids through organs and organs systems is an integral component of their function. The complex fluid dynamics in many organ systems are still not completely understood, and in-vivo measurements of flow rates and pressure provide a testament to the complexity of each flow system. Variability in in-vivo measurements and the lack of control over flow characteristics leave a lot to be desired for testing and evaluation of current modes of treatments as well as future innovations. In-vitro models are particularly ideal for studying neurological conditions such as hydrocephalus due to their complex pathophysiology and interactions with therapeutic measures. The following aims to present the reciprocating positive displacement pump, capable of inducing pulsating flow of a defined volume at a controlled beat rate and amplitude. While the other fluidic applications of the pump are currently under investigation, this study was focused on simulating the pulsating cerebrospinal fluid production across profiles with varying parameters.

Methods: Pumps were manufactured using 3D printed and injection molded parts. The pumps were powered by an Arduino-based board and proprietary software that controls the linear motion of the pumps to achieve the specified output rate at the desired pulsation rate and amplitude. A range of 0.01 [Formula: see text] to 0.7 [Formula: see text] was tested to evaluate the versatility of the pumps. The accuracy and precision of the pumps' output were evaluated by obtaining a total of 150 one-minute weight measurements of degassed deionized water per output rate across 15 pump channels. In addition, nine experiments were performed to evaluate the pumps' control over pulsation rate and amplitude.

Results: Volumetric analysis of a total of 1200 readings determined that the pumps achieved the target output volume rate with a mean absolute error of -0.001034283 [Formula: see text] across the specified domain. It was also determined that the pumps can maintain pulsatile flow at a user-specified beat rate and amplitude.

Conclusion: The validation of this reciprocating positive displacement pump system allows for the future validation of novel designs to components used to treat hydrocephalus and other physiologic models involving pulsatile flow. Based on the promising results of these experiments at simulating pulsatile CSF flow, a benchtop model of human CSF production and distribution could be achieved through the incorporation of a chamber system and a compliance component.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9098063PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0262372PLOS

Publication Analysis

Top Keywords

reciprocating positive
12
positive displacement
12
displacement pump
12
[formula text]
12
flow
9
validation reciprocating
8
pulsating flow
8
cerebrospinal fluid
8
fluid production
8
in-vivo measurements
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!