Knowledge of sex determination has important implications in physiology, ecology and genetics, but the evolutionary mechanisms of sex determination systems in turtles have not been fully elucidated, due to a lack of reference genomes. Here, we generate a high-quality genome assembly of Asian yellow pond turtle (Mauremys mutica) using continuous long-read (PacBio platform), Illumina, and high-throughput chromatin conformation capture (Hi-C) technologies. The M. mutica haplotype has a genome size of 2.23 Gb with a contig N50 of 8.53 Mb and scaffold N50 of 141.98 Mb. 99.98% sequences of the total assembly are anchored to 26 pseudochromosomes. Comparative genomics analysis indicated that the lizard-snake-tuatara clade diverged from the bird-crocodilian-turtle clade at approximately 267.0-312.3 Mya. Intriguingly, positive selected genes are mostly enriched in the calcium signaling pathway and neuroactive ligand-receptor interaction, which are involved in the process of temperature-dependent sex determination. These findings provide important evolutionary insights into temperature-dependent sex determination system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9098631 | PMC |
http://dx.doi.org/10.1038/s41598-022-12054-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!