A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Higher sensitivity to hydrogen peroxide and light stress conditions of the microcystin producer Microcystis aeruginosa sp PCC7806 compared to non-producer strains. | LitMetric

The increasing incidence of cyanobacterial blooms with their associated production of cyanotoxins lead managers of aquatics systems to control their biomass to limit the health risk. Among the variety of existing treatment approaches, hydrogen peroxide (HO) shows increasing use but the effects of environmental parameters on its effectiveness are still not completely known. With the aim to assess the efficiency of HO treatments in the control of cyanobacterial blooms and decrease toxic risk, we tested three Microcystis strains according to their ability to produce cyanotoxins (a microcystin-producing, non-microcystin-producing and mcyB-knockout mutant). Photochemical efficiency, percentage of living cells and microcystin cell content were compared under various hydrogen peroxide concentrations coupled with stress conditions encountered during the life cycle of cyanobacteria as darkness and high light. The microcystin-producing strain appeared the more sensitive to hydrogen peroxide treatment and to light condition, probably due to a lower rate of repair of Photo System II (PSII). We also highlighted various responses of PSII activity according to Microcystis strains which could partly explain the shift of dominant genotypes often occurring during a bloom event. Our results confirm the link between light and microcystin content and variations of microcystin contents appear as a consequence of photosynthetic activity. These findings could be of particular interest regarding water quality management, especially the use of HO as a potential algaecide which seems to be more effective to use during periods of high light.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.hal.2022.102219DOI Listing

Publication Analysis

Top Keywords

hydrogen peroxide
16
stress conditions
8
cyanobacterial blooms
8
microcystis strains
8
high light
8
light
5
higher sensitivity
4
hydrogen
4
sensitivity hydrogen
4
peroxide
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!