Oncogenic chimeric transcription factors drive tumor-specific transcription, processing, and translation of silent genomic regions.

Mol Cell

INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris, France; Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR 3664, Laboratoire Dynamique du Noyau, 75005 Paris, France. Electronic address:

Published: July 2022

Many cancers are characterized by gene fusions encoding oncogenic chimeric transcription factors (TFs) such as EWS::FLI1 in Ewing sarcoma (EwS). Here, we find that EWS::FLI1 induces the robust expression of a specific set of novel spliced and polyadenylated transcripts within otherwise transcriptionally silent regions of the genome. These neogenes (NGs) are virtually undetectable in large collections of normal tissues or non-EwS tumors and can be silenced by CRISPR interference at regulatory EWS::FLI1-bound microsatellites. Ribosome profiling and proteomics further show that some NGs are translated into highly EwS-specific peptides. More generally, we show that hundreds of NGs can be detected in diverse cancers characterized by chimeric TFs. Altogether, this study identifies the transcription, processing, and translation of novel, specific, highly expressed multi-exonic transcripts from otherwise silent regions of the genome as a new activity of aberrant TFs in cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molcel.2022.04.019DOI Listing

Publication Analysis

Top Keywords

oncogenic chimeric
8
chimeric transcription
8
transcription factors
8
transcription processing
8
processing translation
8
cancers characterized
8
silent regions
8
regions genome
8
transcription
4
factors drive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!