Background: In Egypt, the highly pathogenic avian influenza (HPAI) subtype H5N1 is endemic and possesses a severe impact on the poultry. To provide a better understanding of the distributional characteristics of HPAI H5N1 outbreaks in Egypt, this study aimed to explore the spatiotemporal pattern and identify clusters of HPAI H5N1 outbreaks in Egypt from 2006 to 2017.
Results: The Epidemic curve (EC) was constructed through time series analysis; in which six epidemic waves (EWs) were revealed. Outbreaks mainly started in winter peaked in March and ended in summer. However, newly emerged thermostable clades (2.2.1.1 and 2.2.1.2) during the 4th EW enabled the virus to survive and cause infection in warmer months with a clear alteration in the seasonality of the epidemic cycle in the 5th EW. The endemic situation became more complicated by the emergence of new serotypes. As a result, the EC ended up without any specific pattern since the 6th EW to now. The spatial analysis showed that the highest outbreak density was recorded in the Nile Delta considering it as the 'Hot spot' region. By the 6th EW, the outbreak extended to include the Nile valley. From spatiotemporal cluster epidemics, clustering in the Delta was a common feature in all EWs with primary clusters consistently detected in the hot-spot region, but the location and size varied with each EW. The highest Relative Risk (RR) regions in an EW were noticed to contain the primary clusters of the next EW and were found to include stopover sites for migratory wild birds. They were in Fayoum, Dakahlia, Qalyobiya, Sharkia, Kafr_Elsheikh, Giza, Behera, Menia, and BeniSuef governorates. Transmission of HPAI H5N1 occurred from one location to another directly resulted in a series of outbreaks forming neighboring secondary clusters. The absence of geographical borders between the governorates in addition to non-restricted movements of poultry and low vaccination and surveillance coverage contributed to the wider spread of infection all over Egypt and to look like one epidemiological unit.
Conclusion: Our findings can help in better understanding of the characteristics of HPAI H5N1 outbreaks and the distribution of outbreak risk, which can be used for effective disease control strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9097238 | PMC |
http://dx.doi.org/10.1186/s12917-022-03273-w | DOI Listing |
Emerg Microbes Infect
December 2024
Host-pathogen interactions (HPI) and Disease Intervention and Prevention (DIP) programs, Texas Biomedical Research Institute, San Antonio, TX 78227, USA.
The host range of HPAIV H5N1 was recently expanded to include ruminants, particularly dairy cattle in the United States (US). Shortly after, human H5N1 infection was reported in a dairy worker in Texas following exposure to infected cattle. Herein, we rescued the cattle-origin influenza A/bovine/Texas/24-029328-02/2024(H5N1, rHPbTX) and A/Texas/37/2024(H5N1, rHPhTX) viruses, identified in dairy cattle and human, respectively, and their low pathogenic forms, rLPbTX and rLPhTX, with monobasic HA cleavage sites.
View Article and Find Full Text PDFVirus Evol
December 2024
Department of Biology, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada.
Wild birds are important hosts of influenza A viruses (IAVs) and play an important role in their ecology. The emergence of the A/goose/Guangdong/1/1996 H5N1 (Gs/GD) lineage marked a shift in IAV ecology, leading to recurrent outbreaks and mortality in wild birds from 2002 onwards. This lineage has evolved and diversified over time, with a recent important derivative being the 2.
View Article and Find Full Text PDFmBio
December 2024
Center for Vaccine Innovation, La Jolla Institute for Immunology (LJI), La Jolla, California, USA.
Frequent recent spillovers of subtype H5N1 clade 2.3.4.
View Article and Find Full Text PDFAvian influenza is not a new disease, but the emergence of high pathogenicity avian influenza (HPAI) viruses of the A/Goose/Guangdong/1/96 lineage (Gs/GD) has necessitated fundamental changes to prevention and control strategies for this disease. No longer just an avian disease, avian influenza is capable of causing severe disease in humans and is considered a potential human pandemic threat requiring One Health approaches. In addition, Gs/GD HPAI viruses have developed the capacity to be carried across and between continents by migratory birds.
View Article and Find Full Text PDFRev Sci Tech
December 2024
H5Nx A/Goose/Guangdong/1/96 Eurasian lineage high pathogenicity avian influenza (HPAI) viruses have been the main HPAI strains detected globally since 2005. These have spread around the world, causing a panzootic that has spanned six continents, with continual threat to not only wild and captive birds and poultry, but also wild, captive and domestic mammals and humans. The viruses' ecology and epidemiology - especially the 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!