A pot experiment was performed to investigate the effect of phytoremediation (CK, using tall fescue), fungi remediation (GV, using ), bacterial remediation (PS, using Ps2-6), and microbial-phytoremediation (GVPS, using three species) on removing polycyclic aromatic hydrocarbons (PAHs) and the microbial diversity in soils. Inoculation with and could increase the biomass of tall fescue and the accumulation of phenanthrene (PHE) and pyrene (PYR) in plants. Among them, the highest PHE and PYR removal efficiencies and highest biomass of tall fescue were observed in the GVPS treatment and the microbial diversity in contaminated soil was changed, the result revealed that Proteobacteria and Ascomycota were the dominant bacterial phylum and fungal phylum in all treatments, while more Proteobacteria were detected in GVPS treatment. At the genus level, the abundance of (3.17%), (2.05%), and (8.65%) treated with GVPS increased compared with other treatments. These pieces of evidence contribute to a better understanding of the mechanisms involved in the combined microbial-phytoremediation strategies for PAHs-contaminated soils, especially the effects of microbial-phytoremediation on rhizosphere microbial diversity.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15226514.2022.2071832DOI Listing

Publication Analysis

Top Keywords

tall fescue
12
microbial diversity
12
biomass tall
8
gvps treatment
8
arbuscular mycorrhizal
4
mycorrhizal fungi
4
fungi amf
4
amf plant
4
plant growth-promoting
4
growth-promoting rhizobacteria
4

Similar Publications

Tall fescue ( ) is a widely adopted forage and turf grass. This is partly due to a fungal endophyte, which confers both abiotic and biotic stress tolerance. Although PCR primers exist to test for endophyte presence, these were not designed to quantitatively analyze the amount of fungus in the plant.

View Article and Find Full Text PDF

Effects of Artificially Modified Microbial Communities on the Root Growth and Development of Tall Fescue in Nutrient-Poor Rubble Soil.

Plants (Basel)

November 2024

Xinjiang Uygur Autonomous Region Geology and Mineral Exploration and Development Bureau, Urumqi 830052, China.

The granite rubble soil produced through excavation during construction is nutrient-poor and has a simplified microbial community, making it difficult for plants to grow and increasing the challenges of ecological restoration. Recent studies have demonstrated that microbial inoculants significantly promote plant growth and are considered a potential factor influencing root development. Microorganisms influence root development either directly or indirectly, forming beneficial symbiotic relationships with plant roots.

View Article and Find Full Text PDF

Hydrogen sulfide (HS) functions as a signaling molecule affecting plant growth, development, and stress adaptation. Tall fescue (Festuca arundinacea Schreb.), a bioenergy crop, encounters significant challenges in agricultural production owing to low light by shading.

View Article and Find Full Text PDF

Winter wheat ( L.) is a significant forage source for livestock grazing in the Southern Great Plains (SGP). However, increasing input costs and changing climate conditions compel producers and researchers to search for alternative forage systems, such as cool-season perennials.

View Article and Find Full Text PDF

Although phytoremediation is more economical when compared with traditional physical and chemical soil remediation methods, it remains very expensive when considering the substantial area of the contaminated field. If the quantity of harvested residues can be reduced after each phytoremediation cycle, the practicability and commercial implementation of this environment friendly method can be improved. In this study, cadmium excretion on the leaf surface of Festuca arundinacea was evaluated under various blue and red light conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!