The real-time monitoring of specific guest release from nanoscale assemblies has been of great interest for the potential application in nanomedicine. Herein, we present a facile one-pot strategy to achieve a metal-chelated nanoscale platform that enables a highly efficient luminescence resonance energy transfer (LRET) for the monitoring of hydrophobic cargo release. To this end, Eu(III) as a lanthanide luminophore was employed to induce the metal-mediated self-assembly of chelating block copolymers in the presence of fluorescent Nile Blue (NB) as an organic cargo, which can then produce a nanoscale assembly containing a hybrid polyionic complex (HPIC) of Eu(III) and NB as LRET pairs. Exploiting this Eu(III)-chelated, NB-incorporated polymeric assembly as a luminescent platform that allows for the intermolecular distance-sensitive LRET, we further demonstrate that the facile monitoring of NB release from the carriers was made possible upon the addition of serum albumin as a protein reservoir for the released hydrophobic guest molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsmacrolett.1c00570DOI Listing

Publication Analysis

Top Keywords

luminescence resonance
8
resonance energy
8
energy transfer
8
real-time monitoring
8
organic cargo
8
cargo release
8
euiii-chelated polymeric
4
polymeric hybrid
4
hybrid nanoplatform
4
nanoplatform luminescence
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!