A series of symmetric poly[(oligo(ethylene glycol) methyl ether methacrylate--oligo(ethylene glycol) propyl sodium sulfonate methacrylate)]--polystyrene (POEGMA-PS) diblock copolymers were synthesized as a model system to probe the effect of charge fraction on the phase behavior of charged-neutral single-ion conducting diblock copolymers. Small-angle X-ray scattering (SAXS) experiments showed that increasing the charge fraction does not alter the ordered phase morphology (lamellar) but increases the order-disorder transition temperature () significantly. Additionally, the effective Flory-Huggins interaction parameter (χ) was found to increase linearly with the charge fraction, similar to the case of conventional salt-doped diblock copolymers. This indicates that the effect of counterion solvation, attributed to the significant mismatch between the dielectric constant of each block, provides the dominant effect in tuning the phase behavior of this charged diblock copolymer. We therefore infer that electrostatic cohesion (local charge ordering induced by Coulombic interactions), which is predicted to suppress microphase separation and lead to asymmetric phase diagrams, only plays a minor role in this model system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsmacrolett.1c00393 | DOI Listing |
ACS Earth Space Chem
January 2025
Department of Earth Sciences, Utrecht University, 3584 CB Utrecht, The Netherlands.
Chemical weathering processes play a key role in regulating the global climate over geological time scales. Lithium (Li) isotope compositions have proven to be a robust proxy for tracing weathering processes that produce secondary minerals, such as clays and oxides, with a focus often placed on Li adsorption to, or incorporation into, clay minerals. In addition, the interaction between Li and Fe-oxides has long been assumed and discussed based on field observations, but experimental constraints on this process are lacking.
View Article and Find Full Text PDFElectrophoresis
January 2025
Pfizer, Analytical Research and Development, Chesterfield, Missouri, USA.
A significant limitation of imaged capillary electric focusing (icIEF) is the inability to identify and characterize specific species in the electropherogram. This has led to the development of complementary ion-exchange chromatography (IEX)-based methods that are amenable to either fraction collection and subsequent characterization or online IEX coupled to mass spectrometry. To overcome this limitation while maintaining the use of icIEF, novel approaches, including an icIEF separation and fractionation technology (MauriceFlex, ProteinSimple), have been developed.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, NC 27401, USA.
Facile phase selective synthesis of copper antimony sulphide (CAS) nanostructures is important because of their tunable photoconductive and electrochemical properties. In this study, off-stoichiometric famatinite phase CAS (CAS) quasi-spherical and quasi-hexagonal colloidal nanostructures (including nanosheets) of sizes, 2.4-18.
View Article and Find Full Text PDFLoading with non-metal cocatalysts to regulate interfacial charge transfer and separation has become a prominent focus in current research. In this study, g-CN/CNT composites loaded with non-metallic cocatalysts were prepared through pyrolysis using urea and CNTs. Various characterization techniques, including transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS), photoelectrochemical (PEC) analysis, fluorescence lifetime spectroscopy (TRPL), electron paramagnetic resonance spectroscopy (ESR), and photoluminescence (PL) spectroscopy, were employed to analyze the sample's microstructure, phase composition, elemental chemical states, and photoelectronic properties.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25(th) Street, corner to J Street. Square of Revolution, Havana 10400. Cuba; NanoCancer, Molecular Immunology Center (CIM), 216 Street, corner to 15 Street, Playa, Havana 11600, Cuba. Electronic address:
Gene expression manipulation is pivotal in therapeutic approaches for various diseases. Non-viral delivery systems present a safer alternative to viral vectors, with reduced immunogenicity and toxicity. However, their effectiveness in promoting endosomal escape, a crucial step in gene transfer, remains limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!