Molecular exchange dynamics between spherical complex coacervate core micelles (C3Ms) are documented using time-resolved small-angle neutron scattering measurements (TR-SANS), and the effects of salt concentration, type of charges, and core block polydispersity to the chain exchange are quantified. Isotopically labeled block copolyelectrolytes were prepared by postpolymerization modification of two nearly identical poly(ethylene oxide--allyl glycidyl ether), one with normal and the other with deuterated PEO blocks (i.e., hPEO-PAGE and dPEO-PAGE). The observed rates at multiple salt concentrations are consolidated using time-salt superposition shift factors representing chain exchange rates and analyzed. Our comprehensive analytical relaxation function based on the sticky-Rouse model and the thermodynamic barrier for core block extraction successfully describes the molecular exchange kinetics between the isotopically labeled C3Ms. We believe this work provides fundamental design criteria for C3Ms with engineered chain exchange dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsmacrolett.1c00482 | DOI Listing |
Langmuir
January 2025
Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, ul. Berdychowo 4, PL 60-965 Poznan, Poland.
Despite extensive research on the use of salts to enhance micellar growth, numerous questions remain regarding the impact of ionic exchange and molecular structure on charge neutralization. This study looks into how certain cations (Na, Ca, and Mg) affect the structure of a cocamidopropyl betaine CAPB and sodium dodecylbenzenesulfonate SDBS surfactant mixture, aiming toward applications in targeted delivery systems. The mixture consists of a zwitterionic surfactant, cocamidopropyl betaine (CAPB), and an anionic surfactant, sodium dodecylbenzenesulfonate (SDBS), combined in varying molar ratios at a total concentration of 200 mM.
View Article and Find Full Text PDFmBio
January 2025
Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA.
Unlabelled: Pathogenic strains cause cholera using different mechanisms. O1 and O139 serogroup strains use the toxin-co-regulated pilus (TCP) and cholera toxin (CT) for intestinal colonization and to promote secretory diarrhea, while non-O1/non-O139 serogroup strains are typically non-toxigenic and use alternate virulence factors to cause a clinically similar disease. An O39 serogroup, TCP/CT-negative strain, named AM-19226, uses a type III secretion system (T3SS) to translocate more than 10 effector proteins into the host cell cytosol.
View Article and Find Full Text PDFLangmuir
January 2025
Centre for Computational and Data Sciences, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
Understanding the arrangement of ionic liquids at the interface and their interactions with the surface is crucial for enhancing selectivity in heterogeneous reactions for practical applications. In this study, we investigate the nature of the adsorption and structural orientations of a sulfonyl-based ionic liquid on platinum-based mono- and bimetallic (111) surfaces employing replica exchange molecular dynamics and first-principles density functional theory calculations. More than 30 confirmations of the ionic liquid are identified on both monometallic and bimetallic surfaces.
View Article and Find Full Text PDFHeliyon
January 2025
Nuclear Chemistry Division, Department of Chemistry, Atomic Energy Commission, P. O. Box: 9061, Damascus, Syrian Arab Republic.
Molecular scale information is needed to understand ions coordination to mineral surfaces and consequently to accelerate the design of improved adsorbents. The present work reports on the use of two-dimensional correlation Fourier Transform infra-red spectroscopy (2D-COS-FTIR) and hetero 2D-COS-FTIR- X-ray diffraction (XRD) to probe the mechanism of Cr(VI) removal from aqueous solutions by activated carbon (AC) and its composite with PWO (AC-composite). The adsorption data at an initial Cr(VI) concentration of 320 mg L (320 ppm) revealed maximum adsorption capacities of 65 mg g for AC and 73 mg g for AC-composite, corresponding to removal percentages of 83 % and 94 %, respectively.
View Article and Find Full Text PDFBMC Neurosci
January 2025
Department of Operative Dentistry and Periodontology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
Background: Parkinson's disease (PD) is a neurodegenerative disorder characterized by protein aggregates mostly consisting of misfolded alpha-synuclein (αSyn). Progressive degeneration of midbrain dopaminergic neurons (mDANs) and nigrostriatal projections results in severe motor symptoms. While the preferential loss of mDANs has not been fully understood yet, the cell type-specific vulnerability has been linked to a unique intracellular milieu, influenced by dopamine metabolism, high demand for mitochondrial activity, and increased level of oxidative stress (OS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!