A new class of donor-acceptor (D-A) copolymers found to produce high charge carrier mobilities competitive with amorphous silicon (>1 cm V s) exhibit the puzzling microstructure of substantial local order, however lacking long-range order and crystallinity previously deemed necessary for achieving high mobility. Here, we demonstrate the application of low-dose transmission electron microscopy to image and quantify the nanoscale and mesoscale organization of an archetypal D-A copolymer across areas comparable to electronic devices (≈9 μm). The local structure is spatially resolved by mapping the backbone (001) spacing reflection, revealing nanocrystallites of aligned polymer chains throughout nearly the entire film. Analysis of the nanoscale structure of its ordered domains suggests significant short- and medium-range order and preferential grain boundary orientations. Moreover, we provide insights into the rich, interconnected mesoscale organization of this new family of D-A copolymers by analysis of the local orientational spatial autocorrelations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsmacrolett.1c00547DOI Listing

Publication Analysis

Top Keywords

d-a copolymers
8
mesoscale organization
8
unraveling unconventional
4
order
4
unconventional order
4
order high-mobility
4
high-mobility indacenodithiophene-benzothiadiazole
4
indacenodithiophene-benzothiadiazole copolymer
4
copolymer class
4
class donor-acceptor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!