Volatile organic sulfur compounds (VOSCs) serve not only as biomarkers for dental diseases such as halitosis but also as a tracer for monitoring air quality. Room-temperature selective detection and superior sensitivity against VOSCs at a sub-ppm level has remained a challenging task. Here, we propose a heterostructure-based design using a MoSe/SnO composite for achieving sensitive and selective detection of ethyl mercaptan at room temperature. The composite was synthesized via a facile two-step method. A composite-based device has shown detection down to 1 ppm of ethyl mercaptan over a wider range of relative humidity (40-90%). Notably, the composite has shown adsorption selectivity toward ethyl mercaptan compared to hydrogen sulfide and other reducing or oxidizing analytes. Moreover, a density functional theory (DFT) study has been performed to understand the adsorption selectivity, charge transfer, and modification in the electronic properties after molecule adsorption on the host surface. Simulations predicted the lowest negative adsorption energy for ethyl mercaptan, implying the chemisorption (-142.029 kJ mol) process of adsorption. The device thus-obtained has also shown a stable response even at an extreme relative humidity level of 90%. The obtained results and superior signal-to-noise ratio indicate that a MoSe/SnO-based sensor may be a promising candidate for highly selective and sensitive detection of ethyl mercaptan even below 1 ppm.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c25112DOI Listing

Publication Analysis

Top Keywords

ethyl mercaptan
24
highly selective
8
mose/sno composite
8
room temperature
8
selective detection
8
detection ethyl
8
relative humidity
8
adsorption selectivity
8
ethyl
6
mercaptan
6

Similar Publications

Tannin additions decrease the concentration of malodorous volatile sulfur compounds in wine-like model solutions and wine.

Food Chem

January 2025

Departamento de Horticultura, Facultad de Ciencias Agrarias, Universidad de Talca, 2 Norte 685, Talca, Chile.

Hydrogen sulfide (HS), methanethiol (MeSH) and ethanethiol (EtSH) are volatile sulfur compounds (VSCs) produced during winemaking and are associated with negative 'reductive' aromas in wine. Anecdotal evidence suggests that oenological tannins may be used to remediate the 'reductive' character of wines, yet little scientific evidence or explanation supporting this observation has been published. In this study, it was found that the addition of oenological tannins significantly decreased HS, MeSH, and EtSH in model wine by up to 92 %, 90 % and 86 %, respectively, after two weeks of storage.

View Article and Find Full Text PDF

The endogenous reduction of nitrite to nitrosyl is drawing increasing attention as a protective mechanism against hypoxic injury in mammalian physiology and as an alternative source of NO, which is involved in a wide variety of biological activities. Thus, chemical mechanisms for this transformation, which are mediated by metallo proteins, are of considerable interest. The study described here examines the reactions of the biomimetic models Co(TTP)(NO) (TTP = meso-tetratolylporphyrinato dianion) and Mn(TPP)(ONO) (TPP = meso-tetraphenyl-porphyrinato dianion) in sublimated solid films with hydrogen sulfide (HS) and with ethanethiol (EtSH) at various temperatures from 77 K to room temperature using in situ infrared and optical spectroscopy.

View Article and Find Full Text PDF
Article Synopsis
  • - Ethanethiol, a colorless organosulfur compound with a strong odor, has been found in space but its molecular interactions, particularly the dimer structure, are not well understood, unlike ethanol.
  • - This study utilized the MP2 computational method to analyze the stability and properties of ethanethiol monomers and dimers, discovering that the gauche conformation is more stable than the trans form.
  • - Eight different dimer configurations were identified, categorized as trans-trans, gauche-gauche, and trans-gauche, with the trans-gauche variant showing the highest stability, influenced primarily by dispersion forces.
View Article and Find Full Text PDF

Applied Investigation of Methyl, Ethyl, Propyl, and Butyl Mercaptan as Potential Poisons in the Gas Phase Polymerization Reaction of Propylene.

Polymers (Basel)

October 2024

Grupo de Investigaciones en Química y Biología, Departamento de Química Y Biología, Facultad de CienciasBásicas, Universidad del Norte, Carrera 51B, Km 5, Vía Puerto Colombia, Barranquilla 081007, Colombia.

The polypropylene (PP) synthesis process is crucial in the plastics industry, requiring precise control as it directly impacts the catalytic activity and the final product's performance. This study investigates the effects of trace amounts of four different mercaptans on the polymerization of propylene using a fourth-generation Ziegler-Natta (ZN) catalyst. Various concentrations of these mercaptans were tested, and results showed that their presence significantly reduced the melt flow index (MFI) of the final PP.

View Article and Find Full Text PDF

TAMie Force Field for Alkanethiols: Multifidelity Gaussian Processes for Dealing with Scarce Experimental Data.

J Phys Chem B

October 2024

Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, Stuttgart 70569, Germany.

This study extends the transferable anisotropic Mie potential (TAMie) to alkanethiols. The force field parameters are optimized by using an analytic equation of state as a surrogate model. Given the lack of experimental density data at elevated temperatures where Monte Carlo simulations have high statistical precision, the equation of state is supplemented by a linear multifidelity Gaussian process approach to bridge the temperature gap.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!