A review of the phytochemical and pharmacological properties of Amauroderma rugosum.

Kaohsiung J Med Sci

Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.

Published: June 2022

Amauroderma rugosum (AR) is a basidiomycete in the Ganodermataceae family that has been used traditionally to prevent epileptic attacks and constant crying in babies. However, AR has not been widely studied scientifically. In this review, we summarize the phytochemical components and pharmacological properties of AR that have been reported in the literature. Chemical analyses have revealed that the components of AR include sterols, flavonoids, fatty acids and esters, aromatic acids and esters, phenols, polysaccharides, and triterpenes. Pharmacological properties of AR include antioxidant, anti-inflammatory, neuroprotective, anti-cancer, anti-hyperlipidemic, anti-epileptic, and antibacterial effects. These findings suggest that AR and its bioactive ingredients have potential therapeutic applications, particularly for age-related diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1002/kjm2.12554DOI Listing

Publication Analysis

Top Keywords

pharmacological properties
12
amauroderma rugosum
8
acids esters
8
review phytochemical
4
phytochemical pharmacological
4
properties amauroderma
4
rugosum amauroderma
4
rugosum basidiomycete
4
basidiomycete ganodermataceae
4
ganodermataceae family
4

Similar Publications

Unlabelled: The association of the pathogenesis of neurodegenerative diseases, depression, anxiety, and cognitive disorders with neurotrophin-3 deficiency determines the prospect of creating drugs with a similar mechanism of action. Since the use of full-length NT-3 is limited by unsatisfactory pharmacokinetic properties, the creation of low-molecular mimetics of neurotrophin-3 that are active when administered systemically is relevant. The Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies has created a dimeric dipeptide mimetic of the 4th loop of NT-3, hexamethylenediamide bis-(N-γ-oxybutyryl-L-glutamyl-L-asparagine) with the laboratory code GTS-302, which activates TrkC and TrkB receptors.

View Article and Find Full Text PDF

It was previously shown that the original dipeptide mimetic of the 4th loop of neurotrophin-3 (NT-3) hexamethylenediamide bis-(N-monosuccinyl-L-asparaginyl-L-asparagine) (GTS-301), like the full-length neurotrophin, predominantly activates the tyrosine kinase receptor TrkC and has a neuroprotective effect in vitro at concentrations of 10-10 M, as well as antidiabetic (0.1 and 0.5 mg/kg) and antidepressant (5 and 10 mg/kg) effects after systemic administration in rodents.

View Article and Find Full Text PDF

Purpose: To compare remineralisation efficacy between silver diamine fluoride (SDF) combined with potassium iodide (KI) and sodium fluoride (NaF) varnish using hydroxyapatite (HAP) artificial white spot lesions (AWSLs) demineralisation model.

Materials And Methods: A total of 25 HAP disks was randomly divided into five groups (n = 5): baseline, AWSLs, deionized water (DW), SDF-KI or F-varnish. After AWSLs were developed, the specimen was treated with either deionized water, SDF-KI or F-varnish.

View Article and Find Full Text PDF

Various technical methodologies are required to accurately detect substances of different chemical and pharmacological properties in biological samples, which are increasing in number and variety daily. Therefore, laboratories where many samples and different factors are analyzed simultaneously need methods with easy sample preparation, short analysis times and low analysis costs. In this study, the objective was to scan substances susceptible to chemical degradation, amenable to analysis without hydrolysis, and exhibiting short-term stability by employing a straightforward, expeditious, and cost-efficient method.

View Article and Find Full Text PDF

Introduction: In the central nervous system (CNS), proper interaction between neuronal and glial cells is crucial for the development of mature nervous tissue. Hypomyelinating leukodystrophies (HLDs) are a group of genetic CNS disorders characterized by hypomyelination and/or demyelination. In these conditions, genetic mutations disrupt the biological functions of oligodendroglial cells, which are responsible for wrapping neuronal axons with myelin sheaths.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!