Critical conditions for the formation of p-type ZnO with Li doping.

RSC Adv

State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University Guangzhou 510275 People's Republic of China

Published: August 2018

Similar Publications

This study provides a comprehensive structural, chemical, and optical characterization of CZTS thin films deposited on flexible Kapton substrates via the Successive Ionic Layer Adsorption and Reaction (SILAR) method. The investigation explored the effects of varying deposition cycles (40, 60, 70, and 80) and annealing treatments on the films. An X-ray diffraction (XRD) analysis demonstrated enhanced crystallinity and phase purity, particularly in films deposited with 70 cycles.

View Article and Find Full Text PDF

Cupric oxide (CuO) is a promising p-type semiconducting oxide used in many critical fields, such as energy conversion and storage, and gas sensors, which is attributed to its unique optoelectrical properties and cost-effectiveness. This work successfully deposited amorphous, pinhole-free, ultrathin CuO films using atmospheric pressure spatial atomic layer deposition (SALD) with copper(II) acetylacetonate and ozone as precursors. The growth rate increased from 0.

View Article and Find Full Text PDF

A Scanning Photoelectron Microscopy (SPEM) experiment has been applied to ZnO:N films deposited by Atomic Layer Deposition (ALD) under O-rich conditions and post-growth annealed in oxygen at 800 °C. spatial resolution (130 nm) allows for probing the electronic structure of single column of growth. The samples were cleaved under ultra-high vacuum (UHV) conditions to open atomically clean cross-sectional areas for SPEM experiment.

View Article and Find Full Text PDF

Accurate methods for detecting volatile organic compounds (VOCs) are essential for noninvasive disease diagnosis, with breath analysis providing a simpler, user-friendly alternative to traditional diagnostic tools. However, challenges remain in low-temperature VOC solid-state sensors, especially concerning their selectivity and functionality at room temperature. Herein, we present key insights into optimizing multiwalled carbon nanotubes (MWCNTs)/polyaniline (PANI) and ZnO nanocomposites for efficient, light-free selective acetone sensing.

View Article and Find Full Text PDF

First Principles Study of p-Type Transition and Enhanced Optoelectronic Properties of g-ZnO Based on Diverse Doping Strategies.

Nanomaterials (Basel)

November 2024

Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China.

By utilizing first principles calculations, p-type transition in graphene-like zinc oxide (g-ZnO) through elemental doping was achieved, and the influence of different doping strategies on the electronic structure, energy band structure, and optoelectronic properties of g-ZnO was investigated. This research study delves into the effects of strategies such as single-acceptor doping, double-acceptor co-doping, and donor-acceptor co-doping on the properties of g-ZnO. This study found that single-acceptor doping with Li and Ag elements can form shallow acceptor levels, thereby facilitating p-type conductivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!