Glycine receptors (GlyRs) are the primary mediators of fast inhibitory transmission in the mammalian spinal cord, where they modulate sensory and motor signaling. Mutations in GlyR genes as well as some other genes underlie the hereditary disorder hyperekplexia, characterized by episodic muscle stiffness and exaggerated startle responses. Here, we have investigated pain-related behavior and GlyR expression in the spinal cord of the GlyR deficient mutant mouse (). In mice, the GlyR number is reduced due to a β subunit gene () mutation resulting in aberrant splicing of GlyRβ transcripts. direct physical interaction with the GlyR anchoring protein gephyrin, this subunit is crucially involved in the postsynaptic clustering of heteromeric GlyRs. We show that the mutation differentially affects aspects of the pain-related behavior of homozygous Glrb/Glrb mice. While response latencies to noxious heat were unchanged, chemically induced pain-related behavior revealed a reduction of the licking time and an increase in flinching in spastic homozygotes during both phases of the formalin test. Mechanically induced nocifensive behavior was reduced in spastic mice, although hind paw inflammation (by zymosan) resulted in allodynia comparable to wild-type mice. Immunohistochemical staining of the spinal cord revealed a massive reduction of dotted GlyRα subunit immunoreactivity in both ventral and dorsal horns, suggesting a reduction of clustered receptors at synaptic sites. Transcripts for all GlyRα subunit variants, however, were not reduced throughout the dorsal horn of mice. These findings suggest that the loss of functional GlyRβ subunits and hence synaptically localized GlyRs compromises sensory processing differentially, depending on stimulus modality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9082815PMC
http://dx.doi.org/10.3389/fnmol.2022.832490DOI Listing

Publication Analysis

Top Keywords

spinal cord
12
pain-related behavior
12
deficient mutant
8
mutant mouse
8
glyrα subunit
8
glyr
5
mice
5
nociception glycine
4
glycine receptor
4
receptor deficient
4

Similar Publications

Imaging characteristics and treatment of recurrent germinoma.

J Neurosurg

January 2025

1Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima; and.

Objective: An MRI protocol for germinoma surveillance after complete remission has not been established. Moreover, the standard treatment for recurrent or refractory germinoma has not been determined. In this study, the authors explored the imaging characteristics of recurrent germinoma and discuss their institution's experience with multidisciplinary treatment of this malignancy.

View Article and Find Full Text PDF

Objective: Conventional decompression surgery for beak-type ossification of the posterior longitudinal ligament (OPLL) of the thoracic spine, whether approached anteriorly or posteriorly, poses several challenges, including technical complexity, cerebrospinal fluid leakage, incomplete decompression, and potential neurological deterioration. Therefore, the authors introduce a novel technique, anterior sliding decompression osteotomy (ASDO), for thoracic myelopathy caused by OPLL and evaluate the efficacy and safety of this technique.

Methods: Six patients (4 men and 2 women) who underwent ASDO surgery for beak-type OPLL in the thoracic spine with a follow-up period of at least 2 years were included in the cohort.

View Article and Find Full Text PDF

Altered neural signaling in fibromyalgia syndrome (FM) was investigated with functional magnetic resonance imaging (fMRI). We employed a novel fMRI network analysis method, Structural and Physiological Modeling (SAPM), which provides more detailed information than previous methods. The study involved brain fMRI data from participants with FM (N = 22) and a control group (HC, N = 18), acquired during a noxious stimulation paradigm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!