EGCG Inhibits Proliferation and Induces Apoptosis Through Downregulation of SIRT1 in Nasopharyngeal Carcinoma Cells.

Front Nutr

Key Laboratory of Molecular Target & Clinical Pharmacology, The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.

Published: April 2022

Epigallocatechin-3-gallate (EGCG), a frequently studied catechin in green tea, has been shown involved in the anti-proliferation and apoptosis of human nasopharyngeal carcinoma (NPC) cells. However, the underlying molecular mechanism of the apoptotic effects of EGCG has not been fully investigated. Recent literature emphasized the importance of Sirtuin 1 (SIRT1), an NAD-dependent protein deacetylase, in regulating cellular stress responses, survival, and organismal lifespan. Herein, the study showed that EGCG could significantly inhibit cell proliferation and promote apoptosis of 2 NPC (CNE-2 and 5-8F) cell lines. Moreover, it was also found that SIRT1 is down-regulated by EGCG, and the SIRT1-p53 signaling pathway participates in the effects of EGCG on CNE-2 and 5-8 F cells. Taken together, the findings of this study provided evidence that EGCG could inhibit the growth of NPC cell lines and is linked with the inhibition of the SIRT1-p53 signaling pathway, suggesting the therapeutic potential of EGCG in human NPC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9084317PMC
http://dx.doi.org/10.3389/fnut.2022.851972DOI Listing

Publication Analysis

Top Keywords

egcg
8
nasopharyngeal carcinoma
8
effects egcg
8
egcg inhibit
8
cell lines
8
sirt1-p53 signaling
8
signaling pathway
8
egcg inhibits
4
inhibits proliferation
4
proliferation induces
4

Similar Publications

Neurodegenerative diseases (NDs) are caused by progressive neuronal death and cognitive decline. Epigallocatechin 3-gallate (EGCG) is a polyphenolic molecule in green tea as a neuroprotective agent. This review evaluates the therapeutic effects of EGCG and explores the molecular mechanisms that show its neuroprotective properties.

View Article and Find Full Text PDF

This study aimed to prepare films using Xyloglucan (Xylo) and tea extract (TE) to treat aphthous stomatitis without causing discomfort. Xylo, which gelates by adding polyphenol, was used as a gelation agent, and TE, which contains epigallocatechin-3-gallate (EGCG) with antioxidant properties, was used as an active pharmaceutical agent. Two kinds of films, hydrogel and xerogel films, were prepared by mixing various amounts of Xylo and TE.

View Article and Find Full Text PDF

Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by immune dysregulation and excessive cytokine production. This study aimed to explore the potential of Camellia sinensis L. water extract (CSE) as a treatment for AD by the impact of CSE on inflammatory responses in keratinocytes, particularly concerning the production of inflammatory cytokines and the modulation of signaling pathways relevant to AD pathogenesis.

View Article and Find Full Text PDF

Background: Recent studies have shown that ferroptosis, a newly identified regulated cell death characterized by increased lipid peroxidation and accumulation of toxic lipid peroxides, is closely related to the pathophysiological processes of nervous system diseases which can be inhibited with iron chelators, lipophilic antioxidants, and lipid peroxidation inhibitors.

Objective: To review the current evidence on the efficacy of various natural polyphenols in nervous system injury.

Methods: The data selected for this review were collected by searching the MEDLINE/PubMed, Web of Science, Scopus, and Google Scholar database for articles published in English between 2000 and 2024 using the following terms: cell death, regulated cell death, ferroptosis, lipid peroxides, iron, and glutathione peroxidase.

View Article and Find Full Text PDF

Challenges emerge in the quest for highly efficient and biocompatible coatings to tackle microbial contamination. Here, we propose a bioinspired paradigm combining (-)-epigallocatechin gallate (EGCG) and l-arginine surfactants (LAM) as all-green building blocks for advanced coatings with superior performance. Molecular dynamics simulations reveal the natural assembly process of the EGCG/LAM supramolecular nanoparticles (ELA NPs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!