Glioblastoma multiforme (GBM) is one of the deadliest cancers of the brain. Its ability to infiltrate healthy brain tissues renders it difficult to remove surgically. Furthermore, it exhibits high rates of radio- and chemoresistance, making the survival rates of patients with GBM poor. Therefore, novel effective therapies for GBM remain urgently in demand. Niclosamide is an anti-helminthic drug and recently it has been receiving attention due to its reported anticancer effects in cancer models, including GBM. Furthermore, camptothecin (CPT) is a naturally-occurring alkaloid and has been previously reported to be a potential chemotherapeutic agent by targeting the nuclear topoisomerase I. In the present study, the possible combined chemotherapeutic effects of niclosamide and CPT on the human glioblastoma cell line U87 MG was investigated by MTT assay and western blot analysis. Niclosamide exhibited synergistic activities with CPT to suppress the proliferation of U87 MG cells. Additionally, niclosamide suppressed cell proliferation and induced cell death mainly by triggering ER stress and autophagy, whilst CPT induced cell apoptosis mainly through p53-mediated mitochondrial dysfunction and activation of the MAPK (ERK/JNK) pathways. Overall, these findings suggest that co-administration of niclosamide and CPT may provide a novel therapeutic treatment strategy for GBM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9084225PMC
http://dx.doi.org/10.18632/oncotarget.28227DOI Listing

Publication Analysis

Top Keywords

human glioblastoma
8
niclosamide cpt
8
induced cell
8
niclosamide
6
gbm
5
cpt
5
combined treatment
4
treatment niclosamide
4
niclosamide camptothecin
4
camptothecin enhances
4

Similar Publications

Glioblastoma(GBM) is a highly malignant primary central nervous system tumor that poses a significant threat to patient survival due to its treatment resistance and rapid recurrence.Current treatment options, including maximal safe surgical resection, radiotherapy, and temozolomide (TMZ) chemotherapy, have limited efficacy.In recent years, the role of glycolytic metabolic reprogramming in GBM has garnered increasing attention.

View Article and Find Full Text PDF

Sodium valproate enhances efficacy of NKG2D CAR-T cells against glioblastoma.

Front Immunol

January 2025

Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Chimeric antigen receptor T-cell (CAR-T) therapies have shown promise in glioblastoma clinical studies, but responses remain inconsistent due to heterogeneous tumor antigen expression and immune evasion post-treatment. NKG2D CAR-T cells have demonstrated a favorable safety profile in patients with hematologic tumors, and showed robust antitumor efficacy in various xenograft models, including glioblastoma. However, malignant glioma cells evade immunological surveillance by reducing NKG2D ligands expression or cleavage.

View Article and Find Full Text PDF

Characterization of Bozitinib as a potential therapeutic agent for MET-amplified gastric cancer.

Commun Biol

January 2025

Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.

Hyperactive c-Met signaling pathway caused by altered MET is a common mechanism underlying gastric cancer and represents an attractive target for the treatment of gastric cancer with MET alterations. However, no c-Met kinase inhibitors are currently approved specifically for the treatment of c-Met-amplified gastric cancer. Recently, bozitinib, a highly selective c-Met kinase inhibitor, has shown remarkable potency in selectively inhibiting MET-altered non-small cell lung cancer and secondary glioblastoma.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM), the most prevalent primary malignant brain tumor in adults, exhibits a dismal 6.9% five-year survival rate post-diagnosis. Thymoquinone (TQ), the most abundant bioactive compound in Nigella sativa, has been extensively researched for its anticancer properties across various human cancers.

View Article and Find Full Text PDF

Bioinformatics Analysis of Programmed Death-1-Trastuzumab Resistance Regulatory Networks in Breast Cancer Cells.

Asian Pac J Cancer Prev

January 2025

Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia.

Objective: Programmed cell death-1 (PD-1, encoded by PDCD1) regulatory network participates in glioblastoma multiforme development. However, such a network in trastuzumab-resistant human epidermal growth factor receptor 2-positive (HER2+) breast cancer remains to be determined. Accordingly, this study was aimed to explore the PD-1 regulatory network responsible for the resistance of breast cancer cells to trastuzumab through a bioinformatics approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!