A novel magnetic nanomaterial-immobilized Lewis acidic ionic liquid was successfully synthesized by the covalent embedding of 3-(3-(trimethoxysilyl)propyl)-1-imidazol-3-ium chlorozincate (ii) ionic liquid to the surface of FeO nanoparticles. The material was then characterized by FT-IR, SEM, TEM, TGA, ICP-OES, Raman, and EDS. Its performance as a new-generation Lewis acidic catalyst was also examined on the ultrasound-mediated synthesis of benzoxanthenes and pyrroles. Upon completion, the catalyst was simply recovered by an external magnet for multiple reuses without significant lessening of catalytic performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9087937 | PMC |
http://dx.doi.org/10.1039/c8ra04893b | DOI Listing |
J Am Chem Soc
January 2025
School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, Shandong University, Jinan 250100, P. R. China.
Herein, we describe a hexavalent tellurium-based chalcogen bonding catalysis platform capable of addressing reactivity and selectivity issues. This research demonstrates that hexavalent tellurium salts can serve as a class of highly active chalcogen bonding catalysts for the first time. The tellurium centers in these hexavalent catalysts have only one exposed interaction site, thus providing a favorable condition for the controlling of reaction selectivity.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Chemical Sciences, Federico II University of Naples, via Cinthia, 80126 Napoli, Italy.
Group 4 metallocenes are competent catalysts for the oligomerization of higher α-olefins. Among the many chemical and physical variables of importance in the process, one is the choice of cocatalyst (activator). The impact of various activators on the performance of a representative catalyst, (nBuCp)ZrCl, in the oligomerization of 1-octene was thoroughly investigated; in particular, the molecular weight distribution (MWD) of the oligomers was determined by means of high-resolution high performance liquid chromatography (HR-HPLC).
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China.
Potassium (K)-based batteries hold great promise for cryogenic applications owing to the small Stokes radius and weak Lewis acidity of K. Nevertheless, energy-dense (>200 W h kg) K batteries under subzero conditions have seldom been reported. Here, an over 400 W h kg K battery is realized at -40 °C via an anode-free and dual-ion strategy, surpassing these state-of-the-art K batteries and even most Li/Na batteries at low temperatures (LTs).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Texas A&M University, Department of Chemistry, Texas A&M University, 77842, College Station, UNITED STATES OF AMERICA.
Lewis acids play a central role in a large variety of chemical transformations. The reactivity of the strongest Lewis acids is typically studied in the context of affinity towards hard bases, such as fluoride or oxygenous species. Carbocations can be viewed as soft Lewis acids, possessing significant affinity for softer bases, such as hydride.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
USTC: University of Science and Technology of China, Department of Chemistry, No. 96 Jinzhai Road, 230026, Hefei, CHINA.
The synthesis of metal-organic frameworks (MOFs) by low energy input has been a long-term target for practical applications yet remains a great challenge. Herein, we developed a low-energy MOF growth strategy at a temperature down to 50 °C by simply introducing seeds into the reaction system. The MOFs are continuously grown on the surface of the seeds at a growth rate dozens of times higher than that of conventional solvothermal synthesis at low temperature, while the resulting MOFs possess high crystallinity, porosity, and stability similar to solvothermal seeds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!