Responses of the electron transfer capacity of soil humic substances to agricultural land-use types.

RSC Adv

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences Beijing 100012 China

Published: September 2018

Humic substances (HS) are redox-active organic compounds that constitute a major fraction of natural organic matter in soils. The electron transfer capacity (ETC) of soil HS is mainly dependent on the type and abundance of redox-active functional groups in their structure. It is unclear whether or not agricultural land-use types can affect the ETC of HS in soils. In the present study, we evaluate the responses of ETCs of soil humic acids (HA) and fulvic acids (FA) to different agricultural land-use types. Our results show that both HA and FA of paddy soil showed the highest ETCs, followed by tomato soil, celery cabbage soil, grapevine soil, and myrica rubra soil, respectively. Agricultural land-use types could affect the transformation and decomposition of HS in soils, and thus further change the intrinsic chemical structures associated with ETC. Consequently, the ETC of soil HS exerts a significant difference among different agricultural land-use types. The results of this study could give insight into the roles of HS redox properties on the transport, fate, and redox conversion of organic and inorganic pollutants in different agricultural soils.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9086170PMC
http://dx.doi.org/10.1039/c8ra04278kDOI Listing

Publication Analysis

Top Keywords

agricultural land-use
20
land-use types
20
soil
9
electron transfer
8
transfer capacity
8
capacity soil
8
soil humic
8
humic substances
8
types affect
8
agricultural
6

Similar Publications

Recent advancements in Earth Observation sensors, improved accessibility to imagery and the development of corresponding processing tools have significantly empowered researchers to extract insights from Multisource Remote Sensing. This study aims to use these technologies for mapping summer and winter Land Use/Land Cover features in Cuenca de la Laguna Merín, Uruguay, while comparing the performance of Random Forests, Support Vector Machines, and Gradient-Boosting Tree classifiers. The materials include Sentinel-2, Sentinel-1 and Shuttle Radar Topography Mission imagery, Google Earth Engine, training and validation datasets and quoted classifiers.

View Article and Find Full Text PDF

Background/objectives: Agricultural systems face increasing global pressure to address sustainability challenges, particularly regarding land use and environmental protection. In Romania, where traditional diets are heavily dependent on animal-based products, optimizing land use is critical. This study investigates the potential of plant-based diets to reduce agricultural land use, examining scenarios of partial and complete replacement of animal protein with plant protein sources (soy, peas, and potatoes).

View Article and Find Full Text PDF

Understanding land use/land cover (LULC) changes is crucial for informing policymakers and planners on the dynamics affecting environmental and resource management. Most past studies highlighted the significance of LULC changes and their driving forces in various locations. However, comprehensive analyses that combine the impact of land management technologies (LMTs) on LULC changes using GIS and remote sensing tools have not been widely addressed.

View Article and Find Full Text PDF

Differential biotransformation ability may alter fish biodiversity in polluted waters.

Environ Int

January 2025

Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag 8600, Dübendorf, Switzerland; Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland. Electronic address:

Divergence in the activity of biotransformation pathways could lead to species sensitivity differences to chemical stress. To explore this hypothesis, we evaluated the biotransformation capacity of five fish species representative of Swiss biodiversity assemblages across watercourses surrounded by different land use. We report interspecific differences regarding the presence and activity of major biotransformation pathways, such as the invasive pumpinkseed (Lepomis gibbosus) displaying micropollutant clearance between 3- and 7-fold higher than native species (e.

View Article and Find Full Text PDF

Nutrient pollution has been broadly studied in developed countries, where the primary source is often agricultural diffuse pollution. However, more research is needed in developing countries with a predominance of low-income households, insufficient public service infrastructure, pressure from urban expansion, and scarce information. In this research, centered on the Lerma Cienega protected wetlands in a peri-urban area of Toluca city in Mexico, a socio-ecological systems framework was applied to study the nutrient pollution problem and recommend nutrient control measures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!