A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Segmentation of Optic Disc and Cup Using Modified Recurrent Neural Network. | LitMetric

Glaucoma is one of the leading factors of vision loss, where the people tends to lose their vision quickly. The examination of cup-to-disc ratio is considered essential in diagnosing glaucoma. It is hence regarded that the segmentation of optic disc and cup is useful in finding the ratio. In this paper, we develop an extraction and segmentation of optic disc and cup from an input eye image using modified recurrent neural networks (mRNN). The mRNN use the combination of recurrent neural network (RNN) with fully convolutional network (FCN) that exploits the intra- and interslice contexts. The FCN extracts the contents from an input image by constructing a feature map for the intra- and interslice contexts. This is carried out to extract the relevant information, where RNN concentrates more on interslice context. The simulation is conducted to test the efficacy of the model that integrates the contextual information for optimal segmentation of optical cup and disc. The results of simulation show that the proposed method mRNN is efficient in improving the rate of segmentation than the other deep learning models like Drive, STARE, MESSIDOR, ORIGA, and DIARETDB.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9085314PMC
http://dx.doi.org/10.1155/2022/6799184DOI Listing

Publication Analysis

Top Keywords

segmentation optic
12
optic disc
12
disc cup
12
recurrent neural
12
modified recurrent
8
neural network
8
intra- interslice
8
interslice contexts
8
segmentation
5
disc
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!