The highly effective phosphate-solubilizing microorganisms are significant for making full use of the potential phosphorus resources in the soil and alleviating the shortage of phosphorus resources. In this study, a phosphate-solubilizing fungus was isolated from wheat and cotton rhizosphere soils in the lower reaches of the Yellow River in China and was identified as by morphological and ITS sequencing analysis. In order to obtain a fungus with more efficient phosphorus solubilization ability, we tested three positive mutant strains (P1, P2, and P3) and three negative mutant strains (N1, N2, and N3) through low-energy nitrogen ion implantation mutagenesis. Compared with the parental strain, the phosphate-solubilizing capacity of P1, P2, and P3 was enhanced by 56.88%, 42.26%, and 32.15%, respectively, and that of N1, N2, and N3 was weakened by 47.53%, 35.27%, and 30.86%, respectively. Compared with the parental strain, the total amount of organic acids secreted significantly increased in the three positive mutant strains and decreased in the negative mutant strains; the pH of culture medium was significantly lower in the positive mutant strains and higher in the negative mutant strains. The capacity of phosphate-solubilizing fungus to secrete organic acids and reduce the growth-medium pH was closely related to its phosphate-solubilizing ability. The changes in the amount of organic acids secreted by mutants can alter their acidification and phosphate-solubilizing capacity. In conclusion, this study offers a theoretical basis and strain materials for the exploration and application of phosphate-solubilizing fungi.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9082945 | PMC |
http://dx.doi.org/10.3389/fmicb.2022.793122 | DOI Listing |
PLoS One
January 2025
Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
Tigecycline (Tgc), a third-generation tetracycline is found as the last line of defense against multi-drug resistant bacteria. Recent increased rate of resistance to tgc, a human-restricted agent among animal bacteria poses a significant global health challenge. Overuse of first generation tetracyclines (Tet) and phenicols in animals have been suggested to be associated with Tgc resistance development.
View Article and Find Full Text PDFFolia Microbiol (Praha)
January 2025
Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
Ginsenoside Rh2(S) is well-known for its therapeutic potential against diverse conditions, including some cancers, inflammation, and diabetes. The enzymatic activity of uridine diphosphate glycosyltransferase 51 (UGT51) from Saccharomyces cerevisiae plays a pivotal role in the glycosylation process between UDP-glucose (donor) and protopanaxadiol (acceptor), to form ginsenoside Rh2. However, the catalytic efficiency of the UGT51 has remained a challenging task.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Straße 1, 65366, Geisenheim, Germany.
Improving ale or lager yeasts by conventional breeding is a non-trivial task. Domestication of lager yeasts, which are hybrids between Saccharomyces cerevisiae and Saccharomyces eubayanus, has led to evolved strains with severely reduced or abolished sexual reproduction capabilities, due to, e.g.
View Article and Find Full Text PDFPLoS Biol
January 2025
Microbial Molecular Evolution Group, Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany.
Bacteriophages infect gram-negative bacteria by attaching to molecules present on the bacterial surface, often lipopolysaccharides (LPS). Modification of LPS can lead to resistance to phage infection. In addition, LPS modifications can impact antibiotic susceptibility, allowing for phage-antibiotic synergism.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
Identifying hormone-like quorum sensing (QS) molecules in streptomycetes is challenging due to low production levels but is essential for understanding secondary metabolite biosynthesis and morphological differentiation. This work reports the discovery of a novel γ-butenolide-type signaling molecule (SFB1) via overexpressing its biosynthetic gene (orf18) in Streptomyces fradiae. SFB1 was found to be essential for production of tylosin through dissociating the binding of its receptor TylP (a transcriptional repressor) to target genes, thus activating the expression of tylosin biosynthetic gene cluster (tyl).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!