is a rich source of high-value plant secondary metabolites that have been used in the treatment of various ailments since ancient times. Herein, we report the conversion of bulk Ag ions into highly potent organometallic Ag nanostructures (OM-Ag-NS) using extract as a phytochelating agent for the first time. Analysis by X-ray diffraction (XRD) of OM-Ag-NS revealed that they are of a hybrid nature and include pure Ag crystal planes and Ag-organic-complex crystal planes. An investigation by scanning electron microscopy (SEM) of the NS revealed the rough nanocube-like morphology of OM-Ag-NS with an average particle size of 32 nm. Ultra-performance liquid chromatography-diode array detector (UPLC-DAD) and Fourier transform infrared (FTIR) spectroscopy of extract and the residue validated the utilization of phytochelating compounds in the synthesis process of OM-Ag-NS. Thermogravimetric analysis (TGA) supplemented the findings of UPLC-DAD and showed the thermal loss of the organic capping agent around OM-Ag-NS between 300 and 320 °C. NanoDrop-ultraviolet and visible (UV) spectroscopic analysis showed that the tailored bandgap energy of OM-Ag-NS was 2.82 eV. Moreover, compared with chemically stabilized Ag nanostructures (CS-Ag-NS), OM-Ag-NS exhibited promising performance against highly virulent multidrug-resistant (NDM-1) and (KPC). Our current findings suggest that is a top candidate for tailoring the potential of NS towards various biological activities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9085381PMC
http://dx.doi.org/10.1039/c8ra05655bDOI Listing

Publication Analysis

Top Keywords

organometallic nanostructures
8
crystal planes
8
om-ag-ns
7
retracted article
4
article organometallic
4
nanostructures prepared
4
prepared extract
4
extract highly
4
highly effective
4
effective multidrug-resistant
4

Similar Publications

On analysis of phthalocyanine network through statistical method.

Sci Rep

December 2024

Department of Mathematical Sciences, Faculty of Science, Somali National University, Mogadishu Campus, Mogadishu, Somalia.

Phthalocyanine derivative nanostructures are highly organized organometallic structures that exhibit two-dimensional polymeric phthalocyanine frameworks. We analyze phthalocyanine using the Zagreb-type indices, which offer important insights into the topological characteristics of the molecular structure. Furthermore, we use Pearson correlation analysis to examine the degree of relationship between various structural features and qualities.

View Article and Find Full Text PDF

Enhanced Electrochemical Detection of Valganciclovir Using a Hierarchically Structured Lisianthus Flower-Inspired Bimetallic Ni-Ce Organic Framework.

Langmuir

December 2024

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.

This study reports the development of an innovative electrochemical sensor based on organometallic framework nanostructures for detecting valganciclovir (VLCV). VLCV is employed in the treatment of cytomegalovirus retinitis in AIDS patients. Rational design of nanoarchitectures for electroactive materials is a crucial approach for boosting their electrocatalytic performance.

View Article and Find Full Text PDF

Impact of Potassium Doping on a Two-Dimensional Kagome Organic Framework on Ag(111).

J Phys Chem Lett

December 2024

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China.

Alkali element doping has significant physical implications for two-dimensional materials, primarily by tuning the electronic structure and carrier concentration. It can enhance interface electronic interactions, providing opportunities for effective charge transfer at metal-organic interfaces. In this work, we investigated the effects of gradually increasing the level of K doping on the lattice structure and electronic properties of an organometallic coordinated Kagome lattice on a Ag(111) surface.

View Article and Find Full Text PDF

Ion beam-induced deposition (IBID) using Pt(CO)Cl and Pt(CO)Br as precursors has been studied with ultrahigh-vacuum (UHV) surface science techniques to provide insights into the elementary reaction steps involved in deposition, complemented by analysis of deposits formed under steady-state conditions. X-ray photoelectron spectroscopy (XPS) and mass spectrometry data from monolayer thick films of Pt(CO)Cl and Pt(CO)Br exposed to 3 keV Ar, He, and H ions indicate that deposition is initiated by the desorption of both CO ligands, a process ascribed to momentum transfer from the incident ion to adsorbed precursor molecules. This precursor decomposition step is accompanied by a decrease in the oxidation state of the Pt(II) atoms and, in IBID, represents the elementary reaction step that converts the molecular precursor into an involatile PtX species.

View Article and Find Full Text PDF

Mesoporous Acridinium-Based Covalent Organic Framework for Long-lived Charge-Separated Exciton Mediated Photocatalytic [4+2] Annulation.

Adv Mater

November 2024

Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent, 9000, Belgium.

Article Synopsis
  • Covalent organic frameworks (COFs) can be customized for photocatalysis, but their effectiveness is hampered by rapid charge recombination.
  • Researchers have developed a new design strategy that introduces trap states in COFs to stabilize long-lived charge-separated excitons, enhancing their photocatalytic activity.
  • A specific COF modification using cationic acridinium functionality allows for efficient chemical reactions with high yields, while the COF’s large mesopores facilitate better mass flow and significantly improve catalytic performance compared to existing technologies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!