Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9241876PMC
http://dx.doi.org/10.1128/spectrum.00274-22DOI Listing

Publication Analysis

Top Keywords

detection quantification
4
quantification viable
4
viable mycobacterium
4
mycobacterium tuberculosis
4
tuberculosis bacilli
4
bacilli saline-processed
4
saline-processed stool
4
stool samples
4
samples tuberculosis
4
tuberculosis molecular
4

Similar Publications

QuanFormer: A Transformer-Based Precise Peak Detection and Quantification Tool in LC-MS-Based Metabolomics.

Anal Chem

January 2025

State Key Laboratory of Cellular Stress Biology, Institute of Artificial Intelligence, School of Life Sciences, Faculty of Medicine and Life Sciences, National Institute for Data Science in Health and Medicine, XMU-HBN skin biomedical research center, Xiamen University, Xiamen, Fujian 361102, China.

In metabolomic analysis based on liquid chromatography coupled with mass spectrometry, detecting and quantifying intricate objects is a massive job. Current peak picking methods still cause high rates of incorrectly picked peaks to influence the reliability and reproducibility of results. To address these challenges, we developed QuanFormer, a deep learning method based on object detection designed to accurately quantify peak signals.

View Article and Find Full Text PDF

High-throughput measurement of cellular traction forces at the nanoscale remains a significant challenge in mechanobiology, limiting our understanding of how cells interact with their microenvironment. Here, we present a novel technique for fabricating protein nanopatterns in standard multiwell microplate formats (96/384-wells), enabling the high-throughput quantification of cellular forces using DNA tension gauge tethers (TGTs) amplified by CRISPR-Cas12a. Our method employs sparse colloidal lithography to create nanopatterned surfaces with feature sizes ranging from sub 100 to 800 nm on transparent, planar, and fully PEGylated substrates.

View Article and Find Full Text PDF

Unlabelled: The use of pesticides in agricultural produce is continuously increasing and it raises the question of whether the food is safe or not. Only 0.1% of the sprayed pesticide reaches its target and the rest acts as a contaminant in soil and the environment, thus contaminating the future foods as well.

View Article and Find Full Text PDF

The polymerase gamma (POLG) gene mutation is associated with mitochondria and metabolism disorders, resulting in heterogeneous responses to immunological activation and posing challenges for mitochondrial disease therapy. Optical metabolic imaging captures the autofluorescent signal of two coenzymes, NADH and FAD, and offers a label-free approach to detect cellular metabolic phenotypes, track mitochondria morphology, and quantify metabolic heterogeneity. In this study, fluorescence lifetime imaging (FLIM) of NAD(P)H and FAD revealed that POLG mutator macrophages exhibit a decreased NAD(P)H lifetime, and optical redox ratio compared to the wild-type macrophages, indicating an increased dependence on glycolysis.

View Article and Find Full Text PDF

Plasma proteomic technologies are rapidly evolving and of critical importance to the field of biomedical research. Here we report a technical evaluation of six notable plasma proteomic technologies - unenriched (Neat), Acid depletion, PreOmics ENRICHplus, Mag-Net, Seer Proteograph XT, Olink Explore HT. The methods were compared on proteomic depth, reproducibility, linearity, tolerance to lipid interference, and limit of detection/quantification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!