AI Article Synopsis

  • DNA methylation (DNAm) has a significant link to various diseases and is a potential factor in predicting mortality, particularly when combined with clinical risk factors.
  • In a study involving 15,013 participants over 10 years, researchers identified specific CpGs associated with all-cause mortality, cardiovascular, and cancer death in both European and African ancestry groups.
  • The study developed a DNAm-based prediction model that improved cancer death risk prediction, found potential causal relationships between certain CpGs and longevity, and highlighted their relevance in immune and cancer-related pathways.

Article Abstract

DNA methylation (DNAm) has been reported to be associated with many diseases and with mortality. We hypothesized that the integration of DNAm with clinical risk factors would improve mortality prediction. We performed an epigenome-wide association study of whole blood DNAm in relation to mortality in 15 cohorts (n = 15,013). During a mean follow-up of 10 years, there were 4314 deaths from all causes including 1235 cardiovascular disease (CVD) deaths and 868 cancer deaths. Ancestry-stratified meta-analysis of all-cause mortality identified 163 CpGs in European ancestry (EA) and 17 in African ancestry (AA) participants at p < 1 × 10 , of which 41 (EA) and 16 (AA) were also associated with CVD death, and 15 (EA) and 9 (AA) with cancer death. We built DNAm-based prediction models for all-cause mortality that predicted mortality risk after adjusting for clinical risk factors. The mortality prediction model trained by integrating DNAm with clinical risk factors showed an improvement in prediction of cancer death with 5% increase in the C-index in a replication cohort, compared with the model including clinical risk factors alone. Mendelian randomization identified 15 putatively causal CpGs in relation to longevity, CVD, or cancer risk. For example, cg06885782 (in KCNQ4) was positively associated with risk for prostate cancer (Beta = 1.2, P  = 4.1 × 10 ) and negatively associated with longevity (Beta = -1.9, P  = 0.02). Pathway analysis revealed that genes associated with mortality-related CpGs are enriched for immune- and cancer-related pathways. We identified replicable DNAm signatures of mortality and demonstrated the potential utility of CpGs as informative biomarkers for prediction of mortality risk.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9197414PMC
http://dx.doi.org/10.1111/acel.13608DOI Listing

Publication Analysis

Top Keywords

mortality
5
integrative analysis
4
analysis clinical
4
clinical epigenetic
4
epigenetic biomarkers
4
biomarkers mortality
4
mortality dna
4
dna methylation
4
methylation dnam
4
dnam reported
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!