A three-dimensional crosslinked CFs@CNT/CoS nanocomposite was successfully synthesized by growing carbon nanotubes on carbon nanofibers and a facile sulfurization process. The carbon nanotubes synthesized by sintering melamine under the catalysis of cobalt can increase the specific surface areas and provide abundant sodium ion diffusion channels for the composite. Meanwhile, the formed cobalt sulfide nanoparticles will increase the active sites on the surface of CFs@CNT/CoS. Due to the rational design of the composite structure, such an anode can deliver a specific capacity of 423.7 mA h g after 100 cycles at 100 mA g and exhibit superior rate performance of retaining 324.1 mA h g at 2 A g for sodium storage.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2dt00676fDOI Listing

Publication Analysis

Top Keywords

three-dimensional crosslinked
8
carbon nanofibers
8
sodium storage
8
carbon nanotubes
8
carbon
5
crosslinked nano-structure
4
nano-structure growth
4
growth carbon
4
carbon nanotube/cobalt
4
nanotube/cobalt sulfide
4

Similar Publications

Advancements and Perspectives in Biodegradable Polyester Elastomers: Toward Sustainable and High-Performance Materials.

Int J Mol Sci

January 2025

Academy for Engineering and Technology, Yiwu Research Institute, Zhuhai Fudan Innovation Institute, Fudan University, Shanghai 200433, China.

While the traditional rubber industry faces the severe pressure of environmental pollution and carbon emissions, bio-based and biodegradable elastomers have become a hot topic in the field and drawn intensive research interest. Inspired by polyester resin, incorporating polyol or polycarboxylic acid as a branching unit into aliphatic polyester and/or introducing a monomer with a C=C bond to provide open-bond cross-linking in the fashion of common vulcanization to form three-dimensional network structures are two mainstream strategies for designing biodegradable polyester elastomers (BPEs). Both methods encounter more or fewer problems, such as poor mechanical and thermal properties due to the easy hydrolysis of the ester bond and space hinderance, or the potential harm of the remaining degraded small molecules with olefin bonds.

View Article and Find Full Text PDF

Hydrogels are widely utilized in industrial and scientific applications owing to their ability to immobilize active molecules, cells, and nanoparticles. This capability has led to their growing use in various biomedical fields, including cell culture and transplantation, drug delivery, and tissue engineering. Among the available synthesis techniques, ionizing-radiation-induced fabrication stands out as an environmentally friendly method for hydrogel preparation.

View Article and Find Full Text PDF

In this study, we prepared a new multi-functional intelligent hydrogel preservation film using soy hull nanocellulose (SHNC), polyvinyl alcohol (PVA), chitosan (CS), and anthocyanin (Anth) as raw materials. The physicochemicals of the hydrogel preservation film, and its role in monitoring the freshness and freshness of salmon was evaluated. The results showed that the monomers were crosslinked by hydrogen, ester bonds, and electrostatic interactions in the hydrogel film, and there were three-dimensional pores in the hydrogel film.

View Article and Find Full Text PDF

3D-printed ultra-sensitive strain sensors using biogels prepared from fish gelatin and gellan gum.

Carbohydr Polym

March 2025

Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition (Ministry of Education), Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; China-Ireland International Cooperation Centre for Food Material Science and Structural Design, Fuzhou 350002, China. Electronic address:

The long-term sustainable development of flexible electronic devices is limited by a reliance on synthetic polymers that pose dangers for humans and potentially severe ecological problems, as well as a reliance on conventional processing methods. This work aims to exploit 3D printing to develop natural biogels composed of fish gelatin and high acyl gellan gum for use as flexible sensors. The electrical conductivity and mechanical strength were remarkably enhanced through the environmentally friendly enzyme (transglutaminase) cross-linking and non-toxic ethanol modification treatment, which allows the development of 3D printed sensors for temperature, strain, and stress sensors.

View Article and Find Full Text PDF

Cellulose nanofiber/polyacrylic acid (CNF/PAA) hydrogel-based colorimetric sensor was fabricated for non-invasive screening of prostate cancer (PCa) via selective detection of sarcosine. The hydrogel was synthesized by photo-crosslinking of acrylic acid in the presence of CNF which acted as mechanical reinforcement and as color enhancer. The hydrogel exhibited a high aqueous absorption and high mechanical strength.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!