We designed a photocatalyst and developed sustainable wastewater purification technology, which have significant advantages in effectively solving the global problem of drinking water shortage. In this study, a new nanocomposite was reported and shown to be a catalyst with excellent performance; CuO was coated successively onto functionalized nano γ-AlO, and this novel structure could provide abundant active sites. We evaluated the performance of the CuO@γ-AlO nanocomposite catalyst for polyvinyl alcohol (PVA) degradation under visible light irradiation. Under optimized conditions (calcination temperature, 450 °C; mass ratio of γ-AlO:Cu(NO)·3HO, 1:15; pH value, 7; catalyst dosage, 2.6 g/L; reaction temperature, 20 °C; and HO dosage, 0.2 g/mL), the CuO@γ-AlO nanocomposite catalyst presented an excellent PVA removal rate of 99.21%. After ten consecutive degradation experiments, the catalyst could still maintain a PVA removal rate of 97.58%, thus demonstrating excellent reusability. This study provides an efficient and easy-to-prepare photocatalyst and proposes a mechanism for the synergistic effect of the photocatalytic reaction and the Fenton-like reaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-022-20698-w | DOI Listing |
J Biomed Mater Res B Appl Biomater
February 2025
Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.
Application of one-dimensional nanofibers have witnessed exponential growth over the past few decades and are still emerging with their excellent physicochemical and electrical properties. The driving force behind this intriguing transition lies in their unique high surface-to-volume ratio, ubiquitous nanodomains, improved tensile strength, and flexibility to incorporate deliberate functionalities required for specific and advanced applications. Besides numerous benefits, nanomaterials may adversely interact with biological tissues and potentially be cytotoxic and carcinogenic.
View Article and Find Full Text PDFLangmuir
January 2025
CSSC Nanjing Lvzhou Environmental Protection Co., Ltd, Nanjing 210039, China.
In this study, the MnFeO@CoS magnetic nanocomposite was prepared by a two-step hydrothermal method and used to catalyze the ozone oxidation degradation of methylene blue. It was characterized by XRD, EDS, SEM, FT-IR, and XPS. The results showed that the introduction of CoS made MnFeO grow uniformly on CoS nanosheets, which effectively prevented the agglomeration of MnFeO.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
February 2025
Department of Prosthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq.
While polyetherketoneketone is a high-performance thermoplastic polymer, its hydrophobicity and inertness limit bone adhesion. This study aimed to evaluate a novel PEKK/CaSiO/TeO nanocomposite, comparing it to PEKK/15 wt.% CaSiO and PEKK groups.
View Article and Find Full Text PDFChempluschem
January 2025
Universita degli Studi Di Cagliari, Chemical and Geological Science, S.S. 554 bivio per Sestu, 09042, Monserrato, ITALY.
This work deals with the design of nanocomposite hydrogenation-dehydration bifunctional catalysts for the one-pot conversion of CO2 to dimethyl ether (DME), focusing on obtaining a high and homogeneous dispersion of a Cu-based CO2 hydrogenation phase into the pores of mesostructured supports. Particularly, three aluminosilicate mesostructured acid catalysts with catalytic activity towards methanol dehydration and featuring different porous structures (Al-MCM-41, Al-SBA-15, Al-SBA-16) were synthesized and used as supports to host a CuO/ZnO/ZrO2 (CZZ) CO2 hydrogenation catalyst for methanol synthesis. The use of a mesostructured support allows to maximize the exposed surface of the CO2 reduction function by nanostructuring it through its confinement within the mesochannels, thus obtaining nanocomposite bifunctional catalysts with an ultra-small hydrogenation nanophase.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye.
Chitosan, a multifaceted amino polysaccharide biopolymer derived from chitin, has extensive antibacterial efficacy against diverse pathogenic microorganisms, including both Gram-negative and Gram-positive bacteria, in addition to fungi. Over the course of the last several decades, chitosan nanoparticles (NPs), which are polymeric and bio-based, have garnered a great deal of interest as efficient antibacterial agents. This is mostly due to the fact that they are used in a wide variety of applications, including medical treatments, food, chemicals, and agricultural products.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!