Although germline mutation rates and spectra can vary within and between species, common genetic modifiers of the mutation rate have not been identified in nature. Here we searched for loci that influence germline mutagenesis using a uniquely powerful resource: a panel of recombinant inbred mouse lines known as the BXD, descended from the laboratory strains C57BL/6J (B haplotype) and DBA/2J (D haplotype). Each BXD lineage has been maintained by brother-sister mating in the near absence of natural selection, accumulating de novo mutations for up to 50 years on a known genetic background that is a unique linear mosaic of B and D haplotypes. We show that mice inheriting D haplotypes at a quantitative trait locus on chromosome 4 accumulate C>A germline mutations at a 50% higher rate than those inheriting B haplotypes, primarily owing to the activity of a C>A-dominated mutational signature known as SBS18. The B and D quantitative trait locus haplotypes encode different alleles of Mutyh, a DNA repair gene that underlies the heritable cancer predisposition syndrome that causes colorectal tumors with a high SBS18 mutation load. Both B and D Mutyh alleles are present in wild populations of Mus musculus domesticus, providing evidence that common genetic variation modulates germline mutagenesis in a model mammalian species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9272728 | PMC |
http://dx.doi.org/10.1038/s41586-022-04701-5 | DOI Listing |
J Biol Chem
January 2025
Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada; Department of Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada; Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada; McGill University Health Center, Montreal, Quebec H3A 1A3, Canada. Electronic address:
Site-directed mutagenesis is a fundamental tool indispensable for protein and plasmid engineering. An important technological question is how to achieve the efficiency at the ideal level of 100%. Based on complementary primer pairs, the QuickChange method has been widely used, but it requires significant improvements due to its low efficiency and frequent unwanted mutations.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Neuropediatrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 13353 Berlin, Germany.
Epilepsy affects 50 million people worldwide and is drug-resistant in approximately one-third of cases. Even when a structural lesion is identified as the epileptogenic focus, understanding the underlying genetic causes is crucial to guide both counseling and treatment decisions. Both somatic and germline DNA variants may contribute to the lesion itself and/or influence the severity of symptoms.
View Article and Find Full Text PDFN Biotechnol
January 2025
Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China. Electronic address:
Primordial germ cells (PGCs) are the first germline stem cells to emerge during early embryonic development and are essential for the propagation and survival of species. Genome editing creates mutagenesis possibilities in vivo, but the generation of precise mutations in PGCs is still challenging. Here, we report an optimized approach for highly efficient genome editing via introducing biallelic variations in early embryos in zebrafish.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Biomedical Sciences, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, USA.
The "secondhit" pathway is responsible for biallelic inactivation of many tumor suppressors, where a pathogenic germline allele is joined by somatic mutation of the remaining functional allele. The mechanisms are unresolved, but the human PKD1 tumor suppressor is a good experimental model for identifying the molecular determinants. Inactivation of PKD1 results in autosomal dominant polycystic kidney disease, a very common disorder characterized by the accumulation of fluid-filled cysts and end-stage renal disease.
View Article and Find Full Text PDFMol Cell
January 2025
Drukier Institute for Children's Health, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA. Electronic address:
The efficacy of antibody responses is inherently linked to paratope diversity, as generated through V(D)J recombination and somatic hypermutation. Despite this, it is unclear how genetic diversification mechanisms evolved alongside codon optimality and affect antibody expression. Here, we analyze germline immunoglobulin (IG) genes, natural V(D)J repertoires, serum IgG, and monoclonal antibody (mAb) expression through the lens of codon optimality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!