Background: C3 glomerulopathy (C3G) is a heterogeneous group of chronic renal diseases characterized predominantly by glomerular C3 deposition and complement dysregulation. Mutations in factor H-related (FHR) proteins resulting in duplicated dimerization domains are prototypical of C3G, although the underlying pathogenic mechanism is unclear.
Methods: Using and assays, we performed extensive characterization of an FHR-1 mutant with a duplicated dimerization domain. To assess the FHR-1 mutant's association with disease susceptibility and renal prognosis, we also analyzed copy number variations and FHR-1 plasma levels in two Spanish C3G cohorts and in a control population.
Results: Duplication of the dimerization domain conferred FHR-1 with an increased capacity to interact with C3-opsonized surfaces, which resulted in an excessive activation of the alternative pathway. This activation does not involve C3b binding competition with factor H. These findings support a scenario in which mutant FHR-1 binds to C3-activated fragments and recruits native C3 and C3b; this leads to formation of alternative pathway C3 convertases, which increases deposition of C3b molecules, overcoming FH regulation. This suggests that a balanced FHR-1/FH ratio is crucial to control complement amplification on opsonized surfaces. Consistent with this conceptual framework, we show that the genetic deficiency of FHR-1 or decreased FHR-1 in plasma confers protection against developing C3G and associates with better renal outcome.
Conclusions: Our findings explain how FHR-1 mutants with duplicated dimerization domains result in predisposition to C3G. They also provide a pathogenic mechanism that may be shared by other diseases, such as IgA nephropathy or age-related macular degeneration, and identify FHR-1 as a potential novel therapeutic target in C3G.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9161805 | PMC |
http://dx.doi.org/10.1681/ASN.2021101318 | DOI Listing |
J Biomol Struct Dyn
December 2024
Laboratory for Macromolecular Biophysics - LBM, Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil.
Transthyretin (TTR) is a vertebrate-exclusive transport protein that plays a key role in binding and distributing thyroid hormones. However, its evolutionary origin lies in the duplication of the gene that encoding the enzyme 5-hydroxyisourate hydrolase (HIUase), which is involved in uric acid metabolism. Unlike TTR, HIUase is ubiquitous in both prokaryotes and eukaryotes, with the exception of hominids.
View Article and Find Full Text PDFTrends Biochem Sci
December 2024
Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA. Electronic address:
Complexification of macrobiomolecules, such as homodimer to heterodimer transitions, are common during evolution. Is such complexification always adaptive? Using large-scale experiments and in-depth biochemical analyses, Després et al. recently demonstrated that an obligate heterodimer can evolve from a homodimer through neutral, nonadaptive events, and quantified key parameters required for such transitions.
View Article and Find Full Text PDFCommun Chem
October 2024
Gulliver, CNRS, ESPCI, Université PSL, Paris, France.
The difficulty of designing simple autocatalysts that grow exponentially in the absence of enzymes, external drives or ingenious internal mechanisms severely constrains scenarios for the emergence of evolution by natural selection in chemical and physical systems. Here, we systematically analyze these difficulties in the simplest and most generic autocatalyst: a dimeric molecule that duplicates by templated ligation. We show that despite its simplicity, such an autocatalyst can achieve exponential growth autonomously.
View Article and Find Full Text PDFbioRxiv
October 2024
Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA.
Tightly controlled duplication of centrosomes, the major microtubule-organizing centers of animal cells, ensures bipolarity of the mitotic spindle and accurate chromosome segregation. The RBCC (RING-B-box-coiled coil) ubiquitin ligase TRIM37, whose loss is associated with elevated chromosome missegregation and the tumor-prone developmental human disorder Mulibrey nanism, prevents the formation of ectopic spindle poles that assemble around structured condensates containing the centrosomal protein centrobin. Here, we show that TRIM37's TRAF domain, unique in the extended TRIM family, engages peptide motifs in centrobin to suppress condensate formation.
View Article and Find Full Text PDFInt J Mol Sci
September 2024
The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!