Electrospun fibers of poly (lactic acid) (PLA) containing 10 and 20 wt% of bioactive glass (n-BG) and magnesium oxide (n-MgO) nanoparticles of ca. 27 and 23 nm respectively, were prepared toward to application in bone tissue engineering. The addition of both nanoparticles into the PLA will produce a synergic effect increasing its bioactivity and antimicrobial behavior. Neat PLA scaffold and the composites with MgO showed an average fiber diameter of 1.7 ± 0.6 μm, PLA/n-BG and PLA/n-BG/n-MgO fibers presented a significant diameter increase reaching values of ca. 3.1 ± 0.8 μm. Young's modulus of the electrospun scaffolds was affected by the direct presence of the particle and scaffold morphologies. All the composites having n-BG presented bioactivity through the precipitation of hydroxyapatite structures on the surface. Although n-MgO did not add bioactivity to the PLA fibers, they were able to render antimicrobial characteristics reducing the S. aureus viability around 30%, although an effect on E. coli strain was not observed. PLA/n-BG nanocomposites did not display any significant antimicrobial behavior. The different composites increased the alkaline phosphatase (ALP) expression as compared with pure PLA barely affecting the cell viability, meaning a good osteoblastic phenotype expression capacity, with PLA/n-BG presenting the highest osteoblastic expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2022.05.047 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia.
Materials and devices that harvest acoustic energy can enable autonomous powering of microdevices and wireless sensors. However, traditional acoustic energy harvesters rely on brittle piezoceramics, which have restricted their use in wearable electronic devices. To address these limitations, this study involves the fabrication of acoustic harvesters using electrospinning of the piezoelectric polymer PVDF-TrFE onto fabric-based electrodes.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Digestive Endoscopy Center, Department of Spleen and Gastroenterology, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, 650021, People's Republic of China.
Globally, wound care has become a significant burden on public health, with annual medical costs reaching billions of dollars, particularly for the long-term treatment of chronic wounds. Traditional treatments, such as gauze and bandages, often fail to provide an ideal healing environment due to their lack of effective biological activity. Consequently, researchers have increasingly focused on developing new dressings.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
January 2025
Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Szczecin, Poland.
Fabricating complex hierarchical structures mimicking natural vessels and arteries is pivotal for addressing problems of cardiovascular diseases. Various fabrication strategies have been explored to achieve this goal, each contributing unique advantages and challenges to the development of functional vascular grafts. In this study, a three-layered tubular structure resembling vascular grafts was fabricated using biocompatible and biodegradable copolymers of poly(butylene succinate) (PBS) using advanced manufacturing techniques.
View Article and Find Full Text PDFJ Nanobiotechnology
December 2024
State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China.
Background: Electrospun nanofiber scaffolds have been widely used in tissue engineering because they can mimic extracellular matrix-like structures and offer advantages including high porosity, large specific surface area, and customizable structure. In this study, we prepared scaffolds composed of aligned and random electrospun polycaprolactone (PCL) nanofibers capable of delivering basic fibroblast growth factor (bFGF) in a sustained manner for repairing damaged tendons.
Results: Aligned and random PCL fiber scaffolds containing bFGF-loaded bovine serum albumin (BSA) nanoparticles (BSA-bFGF NPs, diameter 146 ± 32 nm) were fabricated, respectively.
Membranes (Basel)
December 2024
School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China.
Triboelectric nanogenerators (TENGs) have garnered significant attention due to their high energy conversion efficiency and extensive application potential in energy harvesting and self-powered devices. Recent advancements in electrospun nanofibers, attributed to their outstanding mechanical properties and tailored surface characteristics, have meant that they can be used as a critical material for enhancing TENGs performance. This review provides a comprehensive overview of the developments in electrospun nanofiber-based TENGs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!