We address the long-standing controversy as to the physical origin of covalent bonding, whether it involves a lowering of the potential energy or a lowering of the kinetic energy. We conclude that both of these do occur and contribute to the formation of the bond. The analysis is in terms of the virial theorem and the variations in the potential energy and the kinetic energy as the atoms approach each other. At large separations, the change in kinetic energy relative to the separated atoms is negative and stabilizing, while the corresponding potential energy change is positive and destabilizing. However, as the atoms approach their equilibrium separation, these rapidly reverse; the kinetic energy increases and the potential energy decreases, so that at equilibrium the net kinetic energy is positive and the net potential energy negative. At equilibrium, the bonding is due solely to the potential energy and is electrostatic.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2cp01529c | DOI Listing |
J Mol Model
January 2025
INIFTA, DQT, Sucursal 4, C. C. 16, 1900, La Plata, Argentina.
Quantum mechanics has proved to be suitable for the study of molecular systems. In particular, the Born-Oppenheimer approximation enables one to separate the motions of electrons and nuclei. In the case of diatomic molecules, this approximation leads to the so-called potential-energy function that provides the interaction between the two nuclei.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
January 2025
The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
Erythropoietin (EPO) is pivotal in regulating red blood cell (erythrocyte) concentrations and is primarily synthesized in the kidney. Recent research has unveiled a possible link between elevated circulating concentrations of ketone bodies (KB) and circulating EPO concentrations, however, it is not known whether nutritionally induced endogenous ketogenesis can be a stimulus to induce EPO in humans. Therefore, this study aimed to assess whether acute and chronic intake of medium-chain fatty acid (MCFA)-containing triacylglycerol (MCT), which rapidly enhances endogenous circulating KB, would elevate circulating EPO concentrations in humans, as indicated by prior work with exogenous KB administration.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic.
Understanding the molecular mechanisms of pore formation is crucial for elucidating fundamental biological processes and developing therapeutic strategies, such as the design of drug delivery systems and antimicrobial agents. Although experimental methods can provide valuable information, they often lack the temporal and spatial resolution necessary to fully capture the dynamic stages of pore formation. In this study, we present two novel collective variables (CVs) designed to characterize membrane pore behavior, particularly its energetics, through molecular dynamics (MD) simulations.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Center of Nanomaterials for Renewable Energy (CNRE), State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
The Fe-N-C catalyst, featuring a single-atom Fe-N configuration, is regarded as one of the most promising catalytic materials for the oxygen reduction reaction (ORR). However, the significant activity difference under acidic and alkaline conditions of Fe-N-C remains a long-standing puzzle. In this work, using extensive ab initio molecular dynamics (AIMD) simulations, we revealed that pH conditions influence ORR activity by tuning the surface charge density of the Fe-N-C surface, rather than through the direct involvement of HO or OH ions.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Departamento de Física Aplicada - Instituto de Ciencia de Materiales, Matter at High Pressure (MALTA) Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr Moliner 50, Burjassot, 46100, Valencia, Spain.
The production of hydrogen (H) fuel through electrocatalysis is emerging as a sustainable alternative to conventional and environmentally harmful energy sources. However, the discovery of cost-effective and efficient materials for this purpose remains a significant challenge. In this study, we explore the potential of the transition-metal-substituted YNS MXene as a promising candidate for hydrogen production through the hydrogen evolution reaction (HER).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!